• Title/Summary/Keyword: tetrapyrrole pathway

Search Result 7, Processing Time 0.018 seconds

Effect of N-Methylmesoporphyrin IX on the Branch Point of the Tetrapyrrole Pathway in Pea (Pisum sativum L.) Chloroplasts

  • Yu, Gyung-Hee
    • BMB Reports
    • /
    • v.28 no.6
    • /
    • pp.523-526
    • /
    • 1995
  • Administering ${\delta}-aminolevulinic$ acid (ALA) to isolated pea (Pisum sativum L.) chloroplasts resulted in an increase of heme synthesis in the heme branch of the tetrapyrrole pathway. At 0.1 mM ALA, in the presence of 1 mM $FeSO_4$ heme synthesis was stimulated up to 7 fold of that in the absence of $FeSO_4$. N-Methylmesoporphyrin IX (NMMP), a powerful inhibitor of ferrochelatase, inhibited heme synthesis by 95% at one micromolar concentration. The addition of A TP to the chloroplasts caused not only heme synthesis, but Mg-protoporphyrin IX synthesis in the chlorophyll branch of the tetrapyrrole pathway. In the presence of NMMP, however, inhibition of Mg-protoporphyrin IX synthesis was not observed whereas heme synthesis was inhibited completely.

  • PDF

PCA를 이용한 유전자 재조합 대장균의 ALA 생산공정의 해석

  • Gang, Tae-Hyeong;Jeong, Sang-Yun;Im, Yong-Sik;Kim, Chun-Gwang;Jeong, Sang-Uk;Lee, Jong-Il
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.157-160
    • /
    • 2003
  • ALA is an intermediate in the tetrapyrrole biosynthesis pathway and has extensive applications as a biodegradable herbicide and insecticide as well as medical applications including photodynamic therapy of cancers. For the development of mass production process of ALA it is necessary to on-line monitor some metabolites such as glycine, succinate, LA and ALA. In this study, medium compositions and fermentation conditions were investigated for enhancement of ALA production by recombinant E. coli. A 2-dimensional fluorescence sensor was employed to monitor the bioprocess of ALA production. The monitored data is analyzed using principal component analysis, a powerful tool for multivariate statistical analysis.

  • PDF

유전자 재조합 대장균을 이용한 5-Aminolevulinic acid(ALA)의 대량 생산 기술 및 모니터링 기술 개발

  • Jeong, Sang-Yun;Lee, Jong-Il;Scheper, Th.
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.87-90
    • /
    • 2003
  • ALA is an essential intermediate in the tetrapyrrole biosynthesis pathway and has applications as a biodegradable herbicide and insecticide as well as medical applications including photodynamic therapy of cancers. For the development of mass production process of ALA it is necessary to on-line monitor some metabolites such as glycine, succinate, LA and ALA. In this work, medium compositions, pH conditions, induction and addition of LA were investigated to increase the production of ALA by recombinant E. coli. A 2-dimensional fluorescence sensor was used to monitor the processe and the fluorescence spectra were correlated with on- and off-line data like ALAS, ALAD, cell mass etc.

  • PDF

Relationship of Fitness and Substance of Porphyrin Biosynthesis Pathway in Resistant Transgenic Rice to Protoporphyrinogen Oxidase (Protox) Inhibitor (Protoporphyrinogen oxidase (Protox) 저해제 저항성 형질전환 벼의 적응성과 Porphyrin 생합성 경로물질과 관련성)

  • Yun, Young-Beom;Kwon, Oh-Do;Back, Kyoung-Whan;Lee, Do-Jin;Jung, Ha-Il;Kuk, Yong-In
    • Korean Journal of Weed Science
    • /
    • v.31 no.2
    • /
    • pp.134-145
    • /
    • 2011
  • The objectives of this study were to investigate fitness difference in growth and rice yield in herbicide-transgenic rice overexpressing Myxococcus xanthus and Arabidopsis thaliana protoporphyrinogen oxidase (Protox) genes and non-transgenic rice. We also aimed to determine whether these fitness differences are related to ALA synthesizing capacity, accumulation of terapyrroles, reactive oxygen species, lipid peroxidation, and antioxidative enzymes at different growth stages of rice. Plant height of the transgenic rice overexpressing M. xanthus (MX) and A. thaliana (AP37) Protox genes at 43, 50, and 65 days after transplanting (DAT) was significantly lower than that of WT. Number of tiller of PX as well as MX and AP37 at 50 and 65 DAT was significantly lower than that of WT. At harvest time, culm length and yield of MX, PX and AP37 and rice straw weight of MX and AP37 were significantly low compared with WT. The reduction of yield in MX, PX, and AP37 was caused by spikelets per panicle and 1000 grain weight, ripened grain, spikelets per panicle, 1000 grain weight, and ripened grain, respectively. On the other hand, 135 the reduction of yield in MX, PX, and AP37 was also observed in another yearly variation experiment. The reduction of rice growth in MX, PX, and AP37 was observed in seedling stage as well as growth duration in field. There were no differences in tetrapyrrole intermediate Proto IX, Mg-Proto IX and Mg-Proto IX monomethyl ester, reactive oxygen species ($H_2O_2$ and ${O_2}^-$), MDA, antioxidative enzymes (SOD, CAT, POX, APX, and GR) and chlorophyll between transgenic lines and wild type, indicating that accumulated tetrapyrrole intermediate and other parameters were not related to growth reduction in transgenic rice. However, ALA synthesizing capacity in MX, PX, and AP37 at one day after exposure to light and 52 DAT was significantly lower than that of WT. Further study is required to elucidate the mechanisms underlying the growth and yield difference between transgenic and WT lines.

Peroxidase and Photoprotective Activities of Magnesium Protoporphyrin IX

  • Kim, Eui-Jin;Oh, Eun-Kyoung;Lee, Jeong K.
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.1
    • /
    • pp.36-43
    • /
    • 2014
  • Magnesium-protoporphyrin IX (Mg-PPn), which is formed through chelation of protoporphyrin IX (PPn) with Mg ion by Mg chelatase, is the first intermediate for the (bacterio)chlorophyll biosynthetic pathway. Interestingly, Mg-PPn provides peroxidase activity (approximately $4{\times}10^{-2}units/{\mu}M$) detoxifying $H_2O_2$ in the presence of electron donor(s). The peroxidase activity was not detected unless PPn was chelated with Mg ion. Mg-PPn was found freely diffusible through the membrane of Escherichia coli and Vibrio vulnificus, protecting the cells from $H_2O_2$. Furthermore, unlike photosensitizers such as tetracycline and PPn, Mg-PPn did not show any phototoxicity, but rather it protected cell from ultraviolet (UV)-A-induced stress. Thus, the exogenous Mg-PPn could be used as an antioxidant and a UV block to protect cells from $H_2O_2$ stress and UV-induced damage.

Analysis of the effects of δ-Aminolevulinic acid on the proliferation and apoptosis of mammalian cells (포유류 세포주에서 δ-Aminolevulinic acid (ALA)의 세포증식과 사멸에 미치는 영향분석)

  • Jun, Yong-Woo;Kim, Kun-Hyung;Jo, Su-Yeon;Lee, Jin-A;Jang, Deok-Jin
    • Analytical Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.223-227
    • /
    • 2014
  • ${\delta}$-Aminolevulinic acid (ALA) is a compound which is widely present in the biosphere and plays an important role in the living body as an intermediate of the tetrapyrrole compound biosynthesis pathway that leads to heme in mammals and chlorophyll in plants. ALA is of interest as a biodegradable mediator, a growth regulator, a precursor of heme proteins, and an effective agent used in therapy of cancer. It has been recently reported that ALA is commonly used in dermatology, due to good effects of skin therapy. Although for the last few decades a substantial amount of research has been focused on the elucidation of the mechanism of ALA and the improvement of its therapeutic activity, it's effect on the cell functions and growth was not cleared. Here, we identified that ALA treatment could attenuate cell proliferation of HEK293T and HaCaT cells. In addition, ALA treatement could induce apoptosis of HeLa cells. These results suggest that apoptosis induced by ALA treatment might be responsible for inhibition of cell proliferation. These results propose the possibility of the improved therapeutic strategy making ALA one of the effective drugs used in human cancers.