• Title/Summary/Keyword: tetrahydrodi(methylcyclopentadiene)

Search Result 2, Processing Time 0.019 seconds

Study on the Isomerization Reaction of Tetrahydrodicyclopentadiene, Tetrahydrodi(methylcyclopentadiene) Using Heteropolyacid Catalyst (헤테로폴리산 촉매를 이용한 Tetrahydrodicyclopentadiene 및 Tetrahydrodi(methylcyclopentadiene)의 이성화반응 연구)

  • Jeong, Byung Hun;Han, Jeong Sik;Kim, Seong Bo;Kang, Cheol Han;Lee, Bum Jae
    • Applied Chemistry for Engineering
    • /
    • v.18 no.1
    • /
    • pp.36-40
    • /
    • 2007
  • The study on the isomerization reaction of endo-tetrahydrodicyclopentadiene and endo-tetrahydrodi(methylcyclopentadiene) using heteropolyacid catalyst was carried out. Exo compound was prepared from endo compound through isomerization reaction. To improve the problem of aluminum chloride as an isomerization catalyst, application of heteropolyacid was attempted. In use of Keggin type heteropolyacid, catalytic activity was extremely high at cesium substitution instead of 2.5 hydrogen atoms of $H_3PW_{12}O_{40}$. Using the cesium substituted heteropolyacid, isomerization reaction rate was faster than aluminum chloride and the effect of reaction temperature and times on reactivities were compared in isomerization of tetrahydrodicyclopentadiene and tetrahydrodi(methylcyclopentadiene).

Study on the Hydrogenation and Isomerization Reaction of Dimethylcyclopentadiene (디메틸시클로펜타디엔의 수소화 및 이성화반응 연구)

  • Jeong, Byung Hun;Han, Jeong Sik;Lee, Jeong Ho;Kim, Seong Bo;Lee, Bum Jae
    • Korean Chemical Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.566-570
    • /
    • 2005
  • The study on the hydrogenation and isomerization of unsaturated bicyclic hydrcarbon compounds using methylcyclopentadiene dimer (MCPD) was carried out. Exo compound was prepared through isomerization reaction after two hydrogenation reaction steps. In the first hydrogenation reaction which needs one mole of hydrogen, the formation rate of monomer was increased as dimer was decomposed at reaction temperature above $100^{\circ}C$. At first hydrogenation, DHDMCPD [dihydrodi(methylcyclopentadiene)] was formed and second hydrogenation was proceeded to produce THDMCPD [tetrahydrodi(methylcyclopentadiene)], the ratio of exo to endo THDMCPD was varied by the control of 2nd hydrogenation temperature. To improve the process, continuous 1st and 2nd hydrogenation conditions were established by using the 2nd stage heat controllable reactor. Also, catalytic activities were compared by the use of halogenized aluminum, metal halides and solid acids catalysts on the isomerization reaction from endo to exo THDMCPD.