• 제목/요약/키워드: tetragonal phase

검색결과 447건 처리시간 0.029초

PZT 세라믹스에 있어서 길이진동모드의 경시변화 (Aging of Length-Extensional Vibration Modes in PZT Ceramics)

  • 이개명;김병효;황충구;강찬호;현덕수
    • 한국전기전자재료학회논문지
    • /
    • 제15권10호
    • /
    • pp.858-864
    • /
    • 2002
  • Aging stabilities of the operating frequency of piezoelectric devices such as filter, oscillator and discriminator are very important. In this study it was studied aging stabilities of the length-extensional vibration mode of Pb(Zr$\^$y/O$_3$+ x[wt%]Cr$_2$Co$_3$ ceramics. PZT ceramics in morphotropic phase boundary have higher aging rates of k$\_$31/ and resonance frequency than those in tetragonal phase or rhombohedral phase. Thermal aging moves the composition with maximum aging rate to Zr-rich side in Cr$_2$O$_3$ not added PZT system. In the PZT system, aging rates of k$\_$31/ and resonance frequency for first 30 days are bigger than those for the following 90 days. Thermal aging decrease those for first 30 days. Aging rate of resonance frequency of the ceramics with x=0.1, y=0.53 and x=0.3, y=0.53 increased by thermal aging.

Biotribological Properties of TZP/Al2O3 Ceramics for Biomechanical Applications

  • Lee, Deuk-Yong;Lee, Se-Jong;Jang, Ju-Woong;Kim, Hak-Kwan;Kim, Dae-Joon
    • 한국세라믹학회지
    • /
    • 제40권6호
    • /
    • pp.525-529
    • /
    • 2003
  • Biotribological properties, such as wear rate and friction coefficient, of 3Y-TZP and Low Temperature Degradation (LTD) free materials were investigated via a ball(SiC)-on-plate sliding wear test to evaluate the relationship between wear mechanism and phase transformation. Wear test was conducted with a sliding speed of 0.035 m/s at room temperature and at 25$0^{\circ}C$ in air under a normal load of 49 N, respectively. Although friction coefficient of 3Y-TZP was the lowest due to the fine grain size, the highest wear loss and rate were observed due to the debris of monoclinic grains introduced during sliding and their values increased drastically with raising temperature. However, the biotribological properties of LTD-free materials were insensitive to temperature due to the inertness of the phase transformation, suggesting that they may be applicable to the biomechanical parts.

연삭된 지르코니아의 표면 특성 (Surface Characteristics of the Ground Zirconia)

  • 김사학
    • 대한치과기공학회지
    • /
    • 제33권4호
    • /
    • pp.323-329
    • /
    • 2011
  • Purpose: This study was conducted to examine the phase transition according to the zirconia surface treatment. Methods: The specimens were divided to four groups. The first group was sintered at $1,500^{\circ}C$ and ground; the second group was sintered at $700^{\circ}C$, ground, and sintered at $1,500^{\circ}C$; the third group was sintered at $1,500^{\circ}C$, ground, and $110{\mu}m$-sandblasted; and the fourth group was sintered at $1,500^{\circ}C$, ground, $110{\mu}m$-sandblasted, treated with 9.5% hydrofluoric acid, and ultrasonic cleaner-washed for two minutes. The monoclinic fractions were measured, and the surface was observed via SEM. Results: The monoclinic fraction was $0.13{\pm}0.19%$ in the control group Zr1, $1.91{\pm}0.15%$ in the experimental group Zr2, $7.71{\pm}0.34%$ in Zr3, and $8.39{\pm}0.25%$ in Zr4. On the surface, the phase transition hardly occurred in the control group Zr1, but it increasingly occurred in the experimental groups Zr3 and Zr4. Conclusion: The monoclinic fraction was high in the experimental groups Zr3 and Zr4. The phase transition did not occur in the control group, but increasingly occurred in the experimental groups.

PZT 세라믹스의 전기기계결합계수 온도 안정성에 관한 연구 (Temperature Stability of Electro-mechanical Coupling Factors of PZT Ceramics)

  • 이개명
    • 한국전기전자재료학회논문지
    • /
    • 제27권1호
    • /
    • pp.27-32
    • /
    • 2014
  • In this paper, PZT piezoelectric ceramic specimens with 4 compositions (Zr/Ti=50/50, 53/47, 56/44, 58/42) in $Pb(Zr,Ti)O_3$ system were fabricated. We studied effects of poling strength and thermal aging on the temperature characteristics of eletromechanical coupling factor k31 of the specimens, which were poled with the DC electric fields, 1.5, 2.5 and 3.5 kV/mm respectively and thermally aged for an hour at $200^{\circ}C$. The eletromechanical coupling factor k31 of the specimen with the composition Zr/Ti= 53/47, nearest to the morphotropic phase boundary decreased the most greatly, irrelevant to the intensity of poling field, due to 1st thermal aging. And the temperature coefficient of eletromechanical coupling factor k31 was (-) in the tetragonal phase composition and (+) in the rhombohedral phase composition, which is reverse in the temperature coefficient of resonance frequency. It is interesting that eletromechanical coupling factor k31 of PZT ceramics is shown to be able to increase as temperature increase in the interval $-20{\sim}80^{\circ}C$.

열에이징에 의한 PZT세라믹스의 내열특성 개선 (Improving Thermal Resisting Property of PZT Ceramics by Thermal Aging)

  • 이개명;김병효
    • 한국전기전자재료학회논문지
    • /
    • 제18권1호
    • /
    • pp.43-49
    • /
    • 2005
  • Temperature stabilities of resonance frequencies of the substrates are very important in piezoelectric ceramics oscillators and fitters. In this study, it was investigated thermal resisting property of the length-extensional vibration mode of PZT ceramics. The mode can be utilized in fabricating ultra-small 55 kHz IF devices. We fabricated the ceramic specimens with x = 0.51, 0.52, 0.53, 0.54, and 0.55 in the Pb(Zr$\sub$x/Ti$\sub$1-x/)O$_3$ system. And their resonance frequencies were measured before 1st thermal aging, after 1st and 2nd thermal aging. In order to investigate the influence of thermal aging on thermal resisting properties, thermally aged specimens were once mote thermally aged. Before 1st thermal aging, the specimens of the compositions with morphotropic phase, x = 0.53 and rhombohedral phase, x = 0.54 have weak thermal resisting property of resonance frequency, while tetragonal phase, x = 0.51 has robust thermal resisting property of resonance frequency. 1st thermal aging improved thermal resisting property of resonance frequency in all specimens.

고압 수증기하 산화에서 핵연료 피복관내 수소효과 연구 (The Effect of Hydrogen in the Nuclear Fuel Cladding on the Oxidation under High Temperature and High Pressure Steam)

  • 정윤목;정성기;박광헌;노선호
    • 한국표면공학회지
    • /
    • 제47권1호
    • /
    • pp.7-12
    • /
    • 2014
  • The characteristics of oxidation for the Zry-4 was measured in the $800^{\circ}C$ and high steam pressure (50 bar, 75 bar, 100 bar) conditions, using an apparatus for high pressure steam oxidation. The effect of accelerated oxidation by high-pressure steam was increased more than 60% in hydrogen-charged cladding than normal cladding. This difference between hydrogen charged claddings and normal claddings tends to be larger as the higher pressure. The accelerated oxidation effect of hydrogen charging cladding is regarded as the hydrogen on the metal layer affects the formation of the protective oxide layer. The creation of the sound monoclinic phase in Zry-4 oxidation influences reinforcement of corrosion-resistance of the oxide layer. The oxidation is estimated to be accelerated due to the creation of equiaxial type oxide film with lower corrosion resistance than that of columnar type oxide film. When tetragonal oxide film transformed into the monoclinic oxide film, surface energy of the new monoclinic phase reduced by hydrogen in the metal layer.

초전도 세라믹 Y-Ba-Cu-O계의 구조적 상전이와 분해거동에 관한 연구 (A Study on the Structural Phase Transition and Decomposition Behavior of the Superconducting Ceramic Y-Ba-Cu-O System)

  • 이민호;이민상;김양수;진영철
    • 열처리공학회지
    • /
    • 제4권3호
    • /
    • pp.47-53
    • /
    • 1991
  • In this study, the structural phase transition and decomposition of superconducting ceramic, Y-Ba-Cu-O system was studied. The results of the study are as follows. The high Tc superconductor $Y_2Ba_2Cu_3O_{7-x}$ is made in solid state reaction of $O_2$ atmosphere and the valve of X in $Y_2Ba_2Cu_3O_{7-x}$ is 0.1~0.2. The transition temperature of tetragonal-orthorhombic phase of $Y_2Ba_2Cu_3O_{7-x}$ appear at $790^{\circ}C-900^{\circ}C$. In the result of measuring the electrical resistance of sample annealed in $O_2$ atmosphere, the electrical resistance show zero at 92 K and the best superconductor, $Y_2Ba_2Cu_3O_{7-x}$(Y 123) can be mabe.

  • PDF

PSN-PMN-PZT 세라믹스의 유전 및 압전 특성과 공진 주파수의 온도안정성 (Dielectric, Piezoelectric Properties and Temperature Stability of Resonant Frequency in PSN-PMN-PZT Ceramics)

  • 윤광희;류주현;민석규;이명수;서성재
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 하계학술대회 논문집
    • /
    • pp.391-395
    • /
    • 2000
  • In this study, the temperature coefficient of resonant frequency(TC $F_{r}$), dielectric and piezoelectric properties of Pb[(S $b_{1}$2/N $b_{1}$2/)$_{0.0035}$-(M $n_{1}$3/N $b_{2}$3/)$_{0.0065}$-(Z $r_{x}$ $Ti_{1-x}$ )$_{0.90}$] $O_3$ceramics is investigated with Zr/Ti ratio. The dielectric constant and electromechanical coupling factor( $k_{p}$) showed the highest values of 1257, 0.562 respectively when the Zr/Ti ratio is 49.5/50.5. The mechanical quality factor( $Q_{m}$) is the lowest value of 713 when the Zr/Ti ratio is 49.5/50.5, and increased with the decrease of the Zr/Ti ratio. The temperature coefficient of resonant frequency(TC $F_{r}$) change abruptly at the morphotropic phase boundary(MPB), which is between the rhombohedral phase with highly negative TC $F_{r}$ of -106ppm/$^{\circ}C$ and the tetragonal phase with highly positive TC $F_{r}$ of +64pp $m^{\circ}C$ as Zr/Ti ratio changes from 50/50 to 49.5/50.5.50.5..5.50.5.5.

  • PDF

Cytotoxicity and biocompatibility of high mol% yttria containing zirconia

  • Gulsan Ara Sathi Kazi;Ryo Yamagiwa
    • Restorative Dentistry and Endodontics
    • /
    • 제45권4호
    • /
    • pp.52.1-52.11
    • /
    • 2020
  • Objectives: Yttria-stabilized tetragonal phase zirconia has been used as a dental restorative material for over a decade. While it is still the strongest and toughest ceramic, its translucency remains as a significant drawback. To overcome this, stabilizing the translucency zirconia to a significant cubic crystalline phase by increasing the yttria content to more than 8 mol% (8YTZP). However, the biocompatibility of a high amount of yttria is still an important topic that needs to be investigated. Materials and Methods: Commercially available 8YTZP plates were used. To enhance cell adhesion, proliferation, and differentiation, the surface of the 8YTZP is sequentially polished with a SiC-coated abrasive paper and surface coating with type I collagen. Fibroblast-like cells L929 used for cell adherence and cell proliferation analysis, and mouse bone marrow-derived mesenchymal stem cells (BMSC) used for cell differentiation analysis. Results: The results revealed that all samples, regardless of the surface treatment, are hydrophilic and showed a strong affinity for water. Even the cell culture results indicate that simple surface polishing and coating can affect cellular behavior by enhancing cell adhesion and proliferation. Both L929 cells and BMSC were nicely adhered to and proliferated in all conditions. Conclusions: The results demonstrate the biocompatibility of the cubic phase zirconia with 8 mol% yttria and suggest that yttria with a higher zirconia content are not toxic to the cells, support a strong adhesion of cells on their surfaces, and promote cell proliferation and differentiation. All these confirm its potential use in tissue engineering.

The effects of surface grinding and polishing on the phase transformation and flexural strength of zirconia

  • Lee, Ji-Young;Jang, Geun-Won;Park, In-Im;Heo, Yu-Ri;Son, Mee-Kyoung
    • The Journal of Advanced Prosthodontics
    • /
    • 제11권1호
    • /
    • pp.1-6
    • /
    • 2019
  • PURPOSE. The purpose of this in vitro study was to evaluate the effect of surface grinding and polishing procedures using high speed zirconia diamond burs with different grit sizes on the phase transformation and flexural strength of zirconia. MATERIALS AND METHODS. Forty disc shape specimens ($15{\times}1.25mm$) with a cylindrical projection in the center of each disc ($1{\times}3mm$) were fabricated with 3Y-TZP (Prettau, Zirkonzahn, Italy). The specimens were divided into 4 groups (n=10) according to the grinding and polishing procedures: Control group - grinding (coarse-grit diamond bur), Group 1 - grinding (coarse-grit diamond bur) + polishing, Group 2 - grinding (fine-grit diamond bur) + polishing, and Group 3 - grinding (fine grit diamond bur). Each specimen was analyzed by 3D-OM, XRD analysis, and biaxial flexural strength test. RESULTS. Based on the surface morphology by 3D-OM images, polished specimens showed smoother surface and lower roughness value (Ra). In the result of XRD analysis, partial phase transformation from tetragonal to monoclinic zirconia occurred in all groups. Control group, ground with a coarse grit diamond bur, showed more $t{\rightarrow}m$ phase transformation and lower flexural strength than Groups 1 and 2 significantly. CONCLUSION. The flexural strength in all specimens after grinding and polishing showed over 500 MPa, and those were clinically acceptable. However, grinding with a coarse grit diamond bur without polishing induced the phase transformation and low strength. Therefore, surface polishing is required for the occlusal adjustment using a high speed zirconia diamond bur to reduce the phase transformation and to prevent the decrease of flexural strength of zirconia.