• Title/Summary/Keyword: testis-specific

Search Result 129, Processing Time 0.025 seconds

Identification and characterization of a novel cancer/testis antigen gene

  • Cho , Bom-Soo;Lee, Dae-Yeon;Lim , Yoon;Park, Sae-Young;Lee, Ho-Soon;Kim, Woo-Ho;Yang, Han-Kwang;Bang, Yung-Jue;Jeoung , Doo-Il
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.326.1-326.1
    • /
    • 2002
  • We applied serological analysis of cDNA expression library technique to identify cancer-associated genes. We screened cDNA expression libraries of human testis and gastric cancer cell lines with sera of patients with gastric cancers. We identified a gene whose expression is testis-specific among normal tissues. We cloned and characterized this novel gene. It contains D-E-A-D box domain and encodes a putative protein of 630 amino acids with possible helicase activity. It showed wide expression in various cancer tissues and cancer cell lines. (omitted)

  • PDF

Use of the Non-electrophoretic Method to Detect Testis Specific Protein Gene for Sexing in Preimplantation Bovine Embryos

  • Huang, Jinming;You, Wei;Wu, Naike;Tan, Xiuwen
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.6
    • /
    • pp.866-871
    • /
    • 2007
  • Testis-specific protein (TSPY) is a Y-specific gene, with up to 200 copy numbers in bulls. In order to make bovine embryo sexing under farm condition more feasible, the possibility of using a non-electrophoretic method to detect the TSPY gene for sexing bovine early embryos was examined. Primers were designed to amplify a portion of the TSPY gene and a common gene as an internal control primer. PCR optimization was carried out using a DNA template from bovine whole blood. Furthermore, embryo samples were diagnosed by this method and the sexing results were contrasted with those of the Loop-Mediated Isothermal Amplification (LAMP) method. The results showed that TSPY was as reliable a sexing method as LAMP. Forty-three morula and blastocyst embryos collected from superovulated donor dairy cattle were sexed by this method, and twenty-one embryos judged to be female embryos were transferred non-surgically to recipients 6 to 8 days after natural estrus. Out of 21 recipients, 9 were pregnant (42.86%) and all delivered female calves. The results showed that the sex predicted by this protocol was 100% accurate. In conclusion, the TSPY gene was a good male specific marker and indicated that a non-electrophoretic method was feasible and accurate to detect the TSPY gene for sexing preimplantation bovine embryos.

Identification and Characterization of Rodent Germ Cells-Specific Hyaluronidases

  • Kim, Ekyune;Chang, Kyu-Tae
    • Reproductive and Developmental Biology
    • /
    • v.36 no.3
    • /
    • pp.155-161
    • /
    • 2012
  • Germ cell-specific hyaluronidases such as sperm adhesion molecule 1 (SPAM1) and hyaluronoglucosaminidase 5 (Hyal5) are in part responsible for dispersal of the cumulus cell mass, which is a critical step in establishing fertilization in mammals. In this study, we identified two testis-hyaluronidases, SPAM1 and Hyal5, in hamster and rat. These two genes were expressed specifically in the testis. At the protein level, hamster SPAM1 and Hyal5 display 78.7% and 75.4% identity with mouse SPAM1 and Hyal5. Further, the activity of the enzymes with respect to cumulus cell dispersion did not differ, although we observed that the enzymatic activity differed in pH range. These studies suggest that different sperm hyaluronidases are capable of dispersing the cumulus cell mass despite differences in enzyme activity.

Molecular cloning and characterization of Izumo1 gene from bovine testis

  • Kim, Ekyune
    • Journal of Animal Science and Technology
    • /
    • v.57 no.4
    • /
    • pp.16.1-16.7
    • /
    • 2015
  • A well-characterized sperm specific protein of the Member of immunoglobulin superfamily, IZUMO1, has crucial role in fertilization by mediating sperm binding to the egg plasma membrane in the mouse. However little is known about IZUMO1 in bovine. Here, we describe the molecular cloning and expression analysis of bovine IZUMO1 (bIZUMO1). RT-PCR and Western blot analysis of the bovine tissues indicated that bIZUMO1 was specifically expressed in the testis and sperm, Furthermore, the result of our biotinylation assay from ejaculated bovine sperm strongly suggest the assumption that bIZUMO1 is localized on the cell surface. These data imply the potential role of bovine IZUMO1 in mammalian fertilization.

Demethylation of CpG islands in the 5' upstream regions mediates the expression of the human testis-specific gene MAGEB16 and its mouse homolog Mageb16

  • Liu, Yunqiang;Wang, Meiling;Jiang, Siyuan;Lu, Yongjie;Tao, Dachang;Yang, Yuan;Ma, Yongxin;Zhang, Sizhong
    • BMB Reports
    • /
    • v.47 no.2
    • /
    • pp.86-91
    • /
    • 2014
  • Tissue-specific gene expression is regulated by epigenetic modification involving trans-acting factors. Here, we identified that the human MAGEB16 gene and its mouse homolog, Mageb16, are only expressed in the testis. To investigate the mechanism governing their expression, the promoter methylation status of these genes was examined in different samples. Two CpG islands (CGIs) in the 5' upstream region of MAGEB16 were highly demethylated in human testes, whereas they were methylated in cells without MAGEB16 expression. Similarly, the CGI in Mageb16 was hypomethylated in mouse testes but hypermethylated in other tissues and cells without Mageb16 expression. Additionally, the expression of these genes could be activated by treatment with the demethylation agent 5'-aza-2'-deoxycytidine (5'-aza-CdR). Luciferase assays revealed that both gene promoter activities were inhibited by methylation of the CGI regions. Therefore, we propose that the testis-specific expression of MAGEB16 and Mageb16 is regulated by the methylation status of their promoter regions.

Metabolism of Lactate Dehydrogenase in Tissues from Ldh-C Expressed Mice (Mus musculus) in a Starvation State (기아상태에서 Ldh-C가 발현된 생쥐(Mus musculus) 조직의 젖산탈수소효소의 대사)

  • Yum, Jung Joo;Kim, Gyu Dong
    • Journal of Life Science
    • /
    • v.28 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • To confirm the function of lactate dehydrogenase (LDH) (EC 1.1.1.27, LDH), its metabolism was studied by activity, kinetics, and isozyme analysis in tissues of Ldh testis-specific C expressing mice (Mus musculus) maintained in a state of starvation for 48 hr and 96 hr. In skeletal muscle, liver, and eye tissues, LDH and LDH $A_4$ activity increased and anaerobic metabolism predominated. While LDH activity in the heart and kidney tissues decreased, LDH $B_4$ activity increased and aerobic metabolism predominated, producing pyruvic acid. In the testis tissue, LDH $C_4$ activity decreased. In the brain tissue, LDH activity increased, but the isozyme change was small and the amount of pyruvic acid decreased. $K{_m}^{PYR}$ increased in tissues other than kidney tissue, and the affinity for pyruvic acid decreased. Consequently, in Ldh-A and B-expressing tissues, the activities of isozymes with higher concentrations increased. However, in Ldh-A, B, and C-expressing tissue, $C_4$ decreased and the function of the tissue also decreased. In particular, LDH in brain tissue played a role as a pyruvate reductase. Therefore, this process might be the mechanism for producing energy in the state of starvation.

Human Y Chromosome: Structure, Function and Evolution (인간 Y 염색체: 구조, 기능 그리고 진화)

  • 홍경원;허재원;김희수
    • Journal of Life Science
    • /
    • v.13 no.6
    • /
    • pp.958-969
    • /
    • 2003
  • The human Y chromosome is strictly paternally inherited and does not X-Y crossing over during male meiosis in most of its length. Although this region came to be known as the non-recombining region Y (NRY), it was renamed as male-specific region Y (MSY) due to abundant recombination. The MSY is a mosaic of heterochromatic sequences and three classes of euchromatic sequences: X-transposed, X-degenerated and ampliconic. The X-transposed sequences exhibit 99% identity to the X chromosomal sequences. The X-degenerate sequences are remnants of ancient autosomes from which the modem X and Y chromosomes evolved. Eight palindromes of the ampliconic comprise one-quarter of the euchromatic DNA of the male-specific region of the human Y chromosome. They contain many testis-specific genes and typically exhibit 99.97% intra-palindromic (arm-to-arm) sequence identity. The arms of these palindromes must have subsequently engaged in gene conversion, driving the pair arms to evolve it concert. Averages of approximately 600 nucleotides per newborn male have undergone Y-Y gene conversion, which has had an important role in the evolution of multi-copy testis gene families in the MSY.

Centrobin/Nip2 Expression In Vivo Suggests Its Involvement in Cell Proliferation

  • Lee, Jungmin;Kim, Sunmi;Jeong, Yeontae;Rhee, Kunsoo
    • Molecules and Cells
    • /
    • v.28 no.1
    • /
    • pp.31-36
    • /
    • 2009
  • Centrobin/Nip2 was initially identified as a centrosome protein that is critical for centrosome duplication and spindle assembly. In the present study, we determined the expression and subcellular localization of centrobin in selected mouse tissues. Immunoblot analysis revealed that the centrobin-specific band of 100 kDa was detected in all tissues tested but most abundantly in the thymus, spleen and testis. In the testis, centrobin was localized at the centrosomes of spermatocytes and early round spermatids, but no specific signal was detected in late round spermatids and elongated spermatids. Our results also revealed that the centrosome duplication occurs at interphase of the second meiotic division of the mouse male germ cells. The centrobin protein was more abundant in the mitotically active ovarian follicular cells and thymic cortex cells than in non-proliferating corpus luteal cells and thymic medullary cells. The expression pattern of centrobin suggests that the biological functions of centrobin are related to cell proliferation. Consistent with the proposal, we observed reduction of the centrobin levels when NIH3T3 became quiescent in the serum-starved culture conditions. However, a residual amount of centrobin was also detected at the centrosomes of the resting cells, suggesting its role for maintaining integrity of the centrosome, especially of the daughter centriole in the cells.

Dimethyloxaloylglycine promotes spermatogenesis activity of spermatogonial stem cells in Bama minipigs

  • Cao, Yaqi;Dai, ZiFu;Lao, Huizhen;Zhao, Huimin
    • Journal of Veterinary Science
    • /
    • v.23 no.2
    • /
    • pp.35.1-35.13
    • /
    • 2022
  • Background: The testis has been reported to be a naturally O2-deprived organ, dimethyloxaloylglycine (DMOG) can inhibit hypoxia inducible factor-1alpha (HIF-1α) subject to degradation under normal oxygen condition in cells. Objectives: The objective of this study is to detect the effects of DMOG on the proliferation and differentiation of spermatogonial stem cells (SSCs) in Bama minipigs. Methods: Gradient concentrations of DMOG were added into the culture medium, HIF-1α protein in SSCs was detected by western blot analysis, the relative transcription levels of the SSC-specific genes were analyzed using quantitative reverse transcription polymerase chain reaction (qRT-PCR). Six days post-induction, the genes related to spermatogenesis were detected by qRT-PCR, and the DNA content was determined by flow cytometry. Results: Results revealed that the levels of HIF-1α protein increased in SSCs with the DMOG treatment in a dose-dependent manner. The relative transcription levels of SSC-specific genes were significantly upregulated (p < 0.05) by activating HIF-1α expression. The induction results showed that DMOG significantly increased (p < 0.05) the spermatogenesis capability of SSCs, and the populations of haploid cells significantly increased (p < 0.05) in DMOG-treated SSCs when compared to those in DMOG-untreated SSCs. Conclusion: We demonstrate that DMOG can promote the spermatogenesis activity of SSCs.

Expressional Profiling of Molecules Associated with Epigenetic Methylation-Related Fertility in the Rat Testis during Postnatal Period

  • Seo, Hee-Jung;Lee, Seong-Kyu;Baik, Haing-Woon;Lee, Ki-Ho
    • Journal of Animal Science and Technology
    • /
    • v.54 no.3
    • /
    • pp.157-163
    • /
    • 2012
  • The male reproduction is precisely controlled by a number of intrinsic and extrinsic factors. These factors usually involve in expressional regulation of various molecules influencing on sperm production in the testis. A number of ways are employed to control the transcription of specific genes, including epigenetic modifications of DNA and histone molecules. DNA methylation of CpG dinucleotides is a commonly used regulatory mechanism for testicular genes associated with the fertility. Previous studies have demonstrated the infertility induced by improper DNA methylation of these genes. In the present research, we attempted to determine transcriptional expression of some of these genes in the rat testis at different postnatal ages using real-time PCR analysis. These genes include neurotrophin 3 (Ntf3), insulin-like growth factor II (Igf2), JmjC-domain-containing histone demethylase 2A 1 (Jhm2da), paired box 8 transcription factor (Pax8), small nuclear ribonucleoprotein polypeptide N (Snrpn), and 5,10-methylenetetrahydrofolate reductase (Mthfr). The expression levels of Ntf3, Igf2, and Snrpn genes were the highest at the neonatal age, followed by transient decreases at the prepubertal age. Expression of Jhm2da and Mthfr genes were continuously increased from the neonate to 1 year of age. The levels of Pax8 mRNA at the early ages were higher than those at the later ages of postnatal development. These findings suggest that expression of some fertility-associated testicular genes in the rat during postnatal period could be differentially regulated by the control of the degree of DNA methylation.