• Title/Summary/Keyword: test pile

Search Result 1,133, Processing Time 0.028 seconds

The Analysis of Skin Friction on Small-scale Prebored and Precast Piles Considering Cement Milk Influence (시멘트풀의 영향을 고려한 축소모형 매입말뚝의 거동분석)

  • Park, Jong-Jeon;Jung, Gyung-Ja;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.1
    • /
    • pp.5-15
    • /
    • 2017
  • Skin friction may be one of the most critical factors in designing the prebored and precast pile. Special attention was given to the interface behavior of cement milk-surrounding soil during the installation of prebored and precast pile. Small-scale field model pile test was conducted for the case of single pile. The size and geometry of the small-scale field model piles were designed with pile length 1.3m, boring diameter 0.067 m. Quick maintain-load test was conducted for the cases of boring diameter 150, 125, 90, 86, 74 mm and water-cement ratio 90, 70, 60%. It was shown that the bearing capacity of the pile increased as the cement-water ratio and cement milk thickness increased. Considering the scale effect between the small-scale model test and the actual construction site, it was found that cement milk thickness of 0.1~0.4D (50~200 mm) was reasonable for the stability of the structure. Also, the proper cement paste water / cement ratio was about 70% when considering the results of this study and quality control.

Analysis of a Bi-directional Load Test Result on tong PHC Piles in Consideration of Residual Load (잔류하중을 고려한 장대 PHC 말뚝의 양방향 재하시험 결과해석)

  • Kim, Sung-Ryul;Chung, Sung-Gyo;Lee, Bong-Yeol
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.6
    • /
    • pp.85-93
    • /
    • 2008
  • For long piles driven in deep clay deposits, it is difficult to estimate the ultimate bearing capacity due to large resistance induced by long embedded depth, and also the load transfer curve due to large residual load induced by negative skin friction, even with the performance of pile load tests. In this research, a hi-directional load test on a PHC pile driven in deep soft deposit was performed in order to evaluate the tip and shaft resistances separately, which are feasible to estimate the ultimate bearing capacity of the pile. Residual load of the pile was determined by continuous monitoring of pile strains after the pile installation. The true resistance and true load-movement curve of the pile were properly estimated by taking account of the residual load. A model far behavior of the shaft resistance vs. movement was also proposed, which includes the effects of residual load based on the experiment. Consequently, it was proved that the residual load should be taken into consideration for correctly analyzing load test results of piles in deep clay deposits.

Behavior of Axial Load Transfer for Open-ended Steel Pipe Pile in Alluvial Deposits (하상퇴적토층에 관입된 개단강관말뚝의 축하중 전이 거동)

  • 김상현;성인출;정창규;김명학;최용규
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.283-290
    • /
    • 2001
  • In this study, static Pile load tests and PDA for open-ended steel pipe pile($\phi$ = 609.6 mm, t = 14 mm) penetrated into the gravel layer(GP - GM) was accomplished and axial load distribution was measured. Based on the tests results, the ultimate bearing capacity and axial load bearing mode were examined. Also, the ultimate pile capacity was calculated by APIL $E^{PLUS}$./.

  • PDF

Evaluation of Liquefaction Remediation of Reclaimed Land by Sand Compaction Pile (모래다짐말뚝(SCP)에 의한 매립지반의 액상화저감효과 평가)

  • Kim, Jong-Kook;Son, Hyung-Ho;Yoon, Won-Sub;Chae, Young-Soo;Choi, In-Gul
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1678-1688
    • /
    • 2008
  • In this study, dredging reclamation ground were performed to evaluate the ground improvement and liquefaction reduction effect with the result that standard penetration test(SPT) and piezo penetration test(CPT) before and after of improvement. Especially, the estimate center of the pile and factor of liquefaction safety to the position of ground around with the pile presented improvement of compaction for improved compaction of dredging reclamation ground.

  • PDF

Development of Dynamic p-y Curve for Jacked Pile by Centrifuge Test (원심모형 실험을 이용한 압입말뚝에 대한 동적 p-y 곡선 산정)

  • Yoo, Min-Taek;Kwon, Sun-Yong;Lee, Il-Hwa
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.3
    • /
    • pp.39-47
    • /
    • 2016
  • In this study, dynamic centrifuge tests in dry sand were conducted in order to evaluate the effect of pile installation on the dynamic p-y curve. According to the result of the pile installation effect on the dynamic p-y backbone curves, the subgrade resistance of a jacked pile in 40 g was found to be greater than that of a jacked pile in 1 g and a preinstalled pile in 1 g. It was also found that differences of the subgrade resistance decrease with the depth of the pile. Applicability of dynamic p-y backbone curve for the bored pile proposed by preceded researcher was evaluated by comparing with the result of centrifuge tests. In addition, dynamic p-y backbone curve for jacking/driven pile was developed by modifying that for the bored pile.

A Group Pile Effect on Changing Size of Pile Cap in Group Pile under Sand Soil in Earthquake (지진 시 사질토 지반에 근입된 무리말뚝의 말뚝 캡 크기가 무리말뚝 효과에 미치는 영향)

  • Lee, Hyunkun;Ahn, Kwangkuk;Kang, Hongsig
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.10
    • /
    • pp.39-46
    • /
    • 2019
  • The interaction between the ground and structures should be considered for seismic design of group piles supporting the superstructure. The p-y curve has been used widely for the analysis of nonlinear relationship between the ground and structures, and various researches have conducted to apply the dynamic p-y curve for seismic design of group piles. This curve considers the interaction between the ground and structures under the dynamic load such as an earthquake. However the supported effect by the pile cap and the interaction by inertia behavior of superstructures. Therefore, the shaking table test was conducted to verify the effect of the change of the pile cap in group piles supporting superstructures embedded in sandy soil. The test condition is that the arrangement and distance between centers of piles are fixed and the length of the pile cap is changed for various distances between the pile cap side and the pile center. The result shows that the distance between the pile cap side and the pile center have an effect on the dynamic p-y curve and the effect of group piles.

Study of pile foundation using spiral pile (나선형 파일을 이용한 말뚝기초에 관한 연구)

  • Yoon, Young-Hwan;Kang, Si-On;Cho, Young-Dong;Kim, Sang-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.567-575
    • /
    • 2018
  • This study examined a pile foundation using a spiral pile. To maintain the structural safely, a foundation for connecting the ground and the ground structure is needed. On the other hand, noise and vibration, etc. cause problems when constructing a foundation on adjacent structures or urban areas. A study of the spiral foundation of a new shape with low vibration and noise was carried out to solve these problems. A study of pile foundations was carried out on a scaled model test and compared with the results of Meyerhof's bearing capacity theory. The scaled model test results showed that the bearing capacity increases with increasing pitch angle and length of the spiral pile. To verify the measured bearing capacity in a test with theoretical results, the bearing capacity of the actual spiral pile and scaled model pile were examined and compared. The ultimate bearing capacity of the spiral pile can be increased by increasing the foundation length and pitch angle. This study complements existing foundation construction problems and contributes to a better effect and safety.

Local Resistance Factor Update of Driven Steel Pipe Piles Using Proof Pile Load Test Results (검증용 정재하시험을 이용한 타입강관말뚝의 저항계수 보정)

  • Park, Jae Hyun;Kim, Dongwook;Chung, Choong Ki;Kim, Sung Ryul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6C
    • /
    • pp.259-266
    • /
    • 2011
  • Conducting statistical analysis of foundation resistance using sufficient number of well-performed load test results is prerequisite for the calibration of reliable resistance factors for foundation LRFD. In this study, a rational analysis method is proposed so that the proof pile load test results can be reflected in update of resistance statistical characteristics based on Bayesian theory. Then, resistance factors for driven steel pipe piles compatible with Korea foundation practices are updated by implementing this rational analysis method. To accomplish the resistance factor updates, (1) prior pile resistance distribution is constructed based on the results of pile load tests, which loads are imposed at least up to their ultimate limit loads. (2) likelihood function is obtained from the results of proof pile load tests, and (3) posterior pile resistance distribution is updated by combining these prior pile resistance distribution and likelihood function. The resistance factors are updated using the posterior pile resistance following the first-order reliability method (FORM). From the possible results of five consecutive proof pile load tests, the updated resistance factors vary within ranges of 0.27-0.96 and 0.19-0.68 for target reliability indices of 2.33 and 3.0, respectively. Consequently, it was found that the Bayesian theory-implemented method enables the updates of resistance factors in an efficient way when reliable resistance factors are not available due to the lack of well-performed pile load test results.