In this paper, we generalizes Kim and Bickel(2003)'s statistic for bivariate normality to that of multinormality, applying Fattorini(1986)'s method. Fattorini(1986) generalized Shapiro-Wilk's statistic for univariate normality to multivariate cases. The proposed statistic could be considered as an approximate statistic to Fattorini(1986)'s. It can be used even for a big sample size. Power performance of the proposed test is assessed in a Monte Carlo study.
Anastasios Katsileros;Nikolaos Antonetsis;Paschalis Mouzaidis;Eleni Tani;Penelope J. Bebeli;Alex Karagrigoriou
Communications for Statistical Applications and Methods
/
v.31
no.1
/
pp.1-35
/
2024
The assumption of homoscedasticity is one of the most crucial assumptions for many parametric tests used in the biological sciences. The aim of this paper is to compare the empirical probability of type I error and the power of ten parametric and two non-parametric tests for homoscedasticity with simulations under different types of distributions, number of groups, number of samples per group, variance ratio and significance levels, as well as through empirical data from an agricultural experiment. According to the findings of the simulation study, when there is no violation of the assumption of normality and the groups have equal variances and equal number of samples, the Bhandary-Dai, Cochran's C, Hartley's Fmax, Levene (trimmed mean) and Bartlett tests are considered robust. The Levene (absolute and square deviations) tests show a high probability of type I error in a small number of samples, which increases as the number of groups rises. When data groups display a nonnormal distribution, researchers should utilize the Levene (trimmed mean), O'Brien and Brown-Forsythe tests. On the other hand, if the assumption of normality is not violated but diagnostic plots indicate unequal variances between groups, researchers are advised to use the Bartlett, Z-variance, Bhandary-Dai and Levene (trimmed mean) tests. Assessing the tests being considered, the test that stands out as the most well-rounded choice is the Levene's test (trimmed mean), which provides satisfactory type I error control and relatively high power. According to the findings of the study and for the scenarios considered, the two non-parametric tests are not recommended. In conclusion, it is suggested to initially check for normality and consider the number of samples per group before choosing the most appropriate test for homoscedasticity.
In Machine learning, we usually divide the entire data into training data and test data, train the model using training data, and use test data to determine the accuracy and generalization performance of the model. In the case of models with low generalization performance, the prediction accuracy of newly data is significantly reduced, and the model is said to be overfit. This study is about a method of generating training data based on central limit theorem and combining it with existed training data to increase normality and using this data to train models and increase generalization performance. To this, data were generated using sample mean and standard deviation for each feature of the data by utilizing the characteristic of central limit theorem, and new training data was constructed by combining them with existed training data. To determine the degree of increase in normality, the Kolmogorov-Smirnov normality test was conducted, and it was confirmed that the new training data showed increased normality compared to the existed data. Generalization performance was measured through differences in prediction accuracy for training data and test data. As a result of measuring the degree of increase in generalization performance by applying this to K-Nearest Neighbors (KNN), Logistic Regression, and Linear Discriminant Analysis (LDA), it was confirmed that generalization performance was improved for KNN, a non-parametric technique, and LDA, which assumes normality between model building.
Journal of the Korea Institute of Military Science and Technology
/
v.17
no.2
/
pp.204-212
/
2014
The purpose of this paper is to investigate the effects of calibration rounds on the statistical distribution of the muzzle velocity in acceptance test of propelling charge. It is shown that the normal distribution fits best among statistical distributions from goodness-of fit test. The 3p-Weibull distribution is also acceptable because the shape of the probability density function curve is similar to that of normal distribution and it also has near zero skewness value. Muzzle velocities of test rounds uncompensated by calibration rounds showed high variation and had comparatively higher skewness. Because the skewness of normal distribution is defined to be zero, calibration rounds make the normality of data higher.
Communications for Statistical Applications and Methods
/
v.19
no.4
/
pp.607-617
/
2012
The goodness-of-fit test for multivariate normal distribution is important because most multivariate statistical methods are based on the assumption of multivariate normality. We propose goodness-of-fit test statistics for multivariate normality based on the modified squared distance. The empirical percentage points of the null distribution of the proposed statistics are presented via numerical simulations. We compare performance of several test statistics through a Monte Carlo simulation.
International Journal of Reliability and Applications
/
v.4
no.4
/
pp.171-181
/
2003
This paper proposes a U-test statistic for the problem of testing that a life distribution is exponential against the alternative that it is harmonic new better (worse) than used in expectation upper tail HNBUET (HNWUET), but not exponential on complete data. Selected critical values are tabulated for sample sizes n =5(1)60. The asymptotic normality of the statistic is proved and a comparison is made of the asymptotic efficiency between the statistic and other statistics. The power of the test is studied by simulation. A test for HNBUET in the case of randomly right-censored data is also considered. An application of the proposed test statistic in medical sciences is given.
Communications for Statistical Applications and Methods
/
v.22
no.6
/
pp.639-646
/
2015
We propose simultaneous tests for mean and variance under the normality assumption. After formulating the null hypothesis and its alternative, we construct test statistics based on the individual p-values for the partial tests with combining functions and derive the null distributions for the combining functions. We then illustrate our procedure with industrial data and compare the efficiency among the combining functions with individual partial ones by obtaining empirical powers through a simulation study. A discussion then follows on the intersection-union test with a combining function and simultaneous confidence region as a simultaneous inference; in addition, we discuss weighted functions and applications to the statistical quality control. Finally we comment on nonparametric simultaneous tests.
The role of high volume Class F fly ash in reducing expansion due to Alkali-Silica Reaction (ASR) was investigated. A series of modified ASTM C 1260 tests were performed under three different levels of NaOH normality, extending the test period to 28 days, using high- or low alkali cement, and Class F fly ash up to 58 % by mass of cement. A reactive siliceous fine aggregate was used. The test results confirm that HVFA replacement in a cementitious system significantly helps in controlling expansion caused by ASR.
Communications for Statistical Applications and Methods
/
v.13
no.2
/
pp.309-318
/
2006
There are many statistical methods of testing the equality of two population variances. Among them, the well-known F test is very sensitive to the normality assumption. Several other tests that do not assume normality have been proposed, but these tests usually need tables of critical values or software for hypotheses testing. McGrath and Yeh (2005) suggested a quick and compact Count Five test requiring only the calculation of the number of extreme points. Since the Count Five test uses only extreme values, this discards some information from the samples, often resulting in a degradation in power. In this paper, an alternative Count Five test using the trimmed mean is proposed and its properties are discussed for some distributions and normal mixtures.
Objectives This study is designed to evaluate the safety of palmul-tang soft extract in healthy male volunteers. Methods Twelve healthy male volunteers were recruited. And this study was conducted in a single center. As a result of the laboratory test, the safety was evaluated by collecting vital signs of volunteers. Twelve subjects were assigned by serial number according to the registration order. For safety evaluation, blood samples were collected and vital signs were checked four times throughout the test period, including screening, pre-administration, post-administration (after 48 hours) and post-administration (after 7 days). The difference in variables was summarized as the mean±standard deviation. The normality was performed using Kolmogorov-Smirnov and Shapiro-Wilk test. If normality is satisfied, a paired t-test is applied. Otherwise, the Wilcoxon sign rank test, which is a nonparametric method, is applied. The significance was p<0.05. The incidence of all side effects is expressed as a percentage. Results In the case of red blood cell, hemoglobin, and hematocrit values, the result of normality test of variables for the difference value before and after administration is significant level p<0.05. However, all laboratory test values before and after administration did not deviate from the normal range. Also the deviations in the normal range could not be seen as significance related to this clinical trial. And no side effects related to clinical trial drugs were observed. Conclusions The soft extract of palmul-tang was considered safe for healthy male volunteers.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.