• Title/Summary/Keyword: test miner

Search Result 64, Processing Time 0.029 seconds

The Fatigue Cumulative Damage and Life Prediction of GFRP under Random Loading (랜덤하중하의 GFRP의 피로누적손상거동과 피로수명예측)

  • Kim, Jeong-Gyu;Sim, Dong-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.12
    • /
    • pp.3892-3898
    • /
    • 1996
  • In this study, the prediction of the fatigue life as well as the extimation of the characteristics of fatigue cumulative damage on GFRP under random loading were performed. The constant amplitude tests and the ramdom loading test were carried on notched GFRP specimens with a circular hole. Random waves were generated with a micro-computer and had wide band spectra. Since it is useful that the prediction of fatigue life ot the given load sequences is based on S-N curves under constant amplitude loading, the estimation of equivalent stress is done on every random waves. The equivalent stress wasat first estimated by Miner's rule and then by the proposed model which was based on Hashin-Rotem's comulative damage theory regarding nonlinear fatigue cumulative damage behavior. The fatigue lives were predicted from each equivalent stress evaluated. And each predicted fatigue llife was compared with experimental results. The number of cycles of random loads were counted by mean-cross counting method. The reuslts showed that the fatigue life predicted by proposed model was correlated well with the experimental results in comparison with Miner's model.

Variable amplitude fatigue test of M30 high-strength bolt in bolt-sphere joint grid structures

  • Qiu, Bin;Lei, Honggang;Yang, Xu;Zhou, Zichun;Wang, Guoqing
    • Steel and Composite Structures
    • /
    • v.33 no.3
    • /
    • pp.433-444
    • /
    • 2019
  • Fatigue failure of a grid structure using bolt-sphere joints is liable to occur in a high-strength bolt due to the alternating and reciprocal actions of a suspension crane. In this study, variable amplitude fatigue tests were carried out on 20 40 Cr steel alloy M30 high-strength bolts using an MTS fatigue testing machine, and four cyclic stress amplitude loading patterns, Low-High, High-Low, Low-High-Low, and High-Low-High, were tested. The scanning electron microscope images of bolt fatigue failure due to variable amplitude stress were obtained, and the fractographic analysis of fatigue fractures was performed to investigate the fatigue failure mechanisms. Based on the available data from the constant amplitude fatigue tests, the variable amplitude fatigue life of an M30 high-strength bolt in a bolt-sphere joint was estimated using both Miner's rule and the Corten-Dolan model. Since both cumulative damage models gave similar predictions, Miner's rule is suggested for estimating the variable-amplitude fatigue life of M30 high-strength bolts in a grid structure with bolt-sphere joints; the S-N fatigue curve of the M30 high-strength bolts under variable amplitude loading was derived using equivalent stress amplitude as a design parameter.

Vibration Fatigue Life for Slot Array RF Antenna Applied to Small Aviation Platform (적층제조 공법이 적용된 소형 항공 플랫폼용 슬롯 배열 초고주파 안테나의 진동피로수명평가에 대한 연구)

  • Kim, Ki-Seung;Kim, Hyo-Tae;Choi, Hye-Yoon;Jung, Hwa-Young
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.1
    • /
    • pp.73-80
    • /
    • 2022
  • Sensors are applied to small aviation platforms for various purposes. Radio frequency (RF) antennas, which are representative sensors, are available in many forms but require the application of slot array RF antennas to ensure high performance and designation. Slot RF array antennas are applied to dip brazing techniques, but the yield and production time are determined by the proficiency of production personnel in a labor-intensive form. Unmanned aerial vehicles or drones, which are representative small aviation platforms, are continuously exposed to various random vibrations because propellers and multiple power sources are used in them. In this study, the fatigue life of slot array RF antennas applied with additive manufacturing was evaluated through the cumulative damage method (Miner's rule) in a vibration environment with a small aviation platform. For the evaluation, an S N curve obtained from a fatigue strength test was used.

A Study on the Evaluation Technique of Quantified Damage for Powertrain System on Traveled Courses (주행노면에 따른 동력장치의 상대 피로 손상도 평가 기법에 관한 연구)

  • Lee, Sang-Ho;Lee, Jeong-Hwan;Kang, Do-Kyung;Goo, Sang-Hwa
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.12
    • /
    • pp.74-81
    • /
    • 2007
  • This paper focuses on improvement of the reliability for endurance test to serve military automobiles. The driving loads have been measured by use of the wireless telemetry system for the drive shaft of the 4-wheel drive car. In order to analyze the transmission input torque and engine revolution of loads of the test courses and unpaved road have been made use of the revolution counting and cumulative damage by miner's rule. This paper presents the evaluated result for quantified damage about the test courses and roads.

A Study on Reliability Estimation for Fatigue Life of the Spider from a Drum Washing Machine (드럼 세탁기 Spider의 피로수명 신뢰성 평가에 대한 연구)

  • 이성민;조상봉;조성진;김영수;강동우;정연수;정보선
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.46-49
    • /
    • 2004
  • The spider of a drum washing machine receives the repeated fatigue loadings during laundering. Although the spider is designed statically safely, it often happens fatigue failure. Therefore it requires the safe design for fatigue and needs the prediction of quantitative fatigue life. The S-N diagram for a spider material is developed by fatigue test and statistical analysis. The stresses are measured directly from strain gages on the spider. To predict the fatigue life of spider, the rainflow counting method and Miner's rule are used. The data for fatigue life are analyzed statistically. From these data, reliability estimation for fatigue life can be done and also, equivalent fatigue life can be obtained. It will be applied to make and improve to a short period for design and prototype test.

  • PDF

A Study on the Accelerated Life Evaluation of Drive Shaft for Independent Suspension type AWD Vehicle (독립현가형 AWD 차량의 구동축 가속 수명 평가에 관한 연구)

  • Kim, Do-Sik
    • Journal of Applied Reliability
    • /
    • v.11 no.4
    • /
    • pp.343-356
    • /
    • 2011
  • This paper proposes an accelerated life evaluation of drive shaft. The life test of drive shaft for independent suspension type AWD vehicle should be performed by use of the least test sample because many number of samples can't be used for the test because of its mass capacity and high price. We calculated the no failure test time by application of no failure test concept, and the already performed test data for drive shaft are applied for some kinds of reliability coefficients which are needed for calculation of life test time. And, for analysis of real driving condition of vehicle, the load spectrum is prepared using the needed road condition and vehicle data. The inverse power model is used for accelerated life test. The equivalent torque of load spectrum is achieved by use of Miner's Rule, and then the final accelerating condition is determined by decision of the accelerated test torque. This paper shows that the accelerated life test results corresponds with the target life and the proposed life test method can be very well applied to no failure life test for mass capacity machinery components.

Development of accelerated life test method for the wind turbine Gearbox using cumulative damage theory (누적손상이론을 이용한 풍력증속기의 가속수명시험법 개발)

  • Son, Ki-Su;Kwak, Hee-Sung;Kang, Change-Hoon;Cho, Jun-Haeng
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.693-697
    • /
    • 2005
  • This study was performed to develop accelerated life test method of the wind-turbine gearbox using accumulated damage theory that used to model the fatigue of parts that receive variable load. The accumulated damage theory was introduced, and the estimation of life and calculation of accelerated life test time was illustrated. As the actual application example, accelerated life test method of the gearbox was described. Life distribution of the wind-turbine gearbox was supposed to follow Weibull distribution and life test time was calculated under the conditions of average life (MTBF) 140,600 hours and 99% reliability for one test sample According to the accumulated damage theory, because test time can shorten in case increase test load, test time could be reduced by 1.2 years when we put the load 1.2 times of rated load than 0.93 times of rated load that is equivalent load calculated by load spectrum of the wind turbine. This time, acceleration coefficient was 21.3. This accelerated test method was used to develop accelerated test method of gear reducer, gear and bearing as well as the industrial gearbox and it is considered to be applied comprehensively to mechanical parts the fatigue of which is happened by load or pressure etc.

  • PDF

Development of Accelerated Life Test Method for Machanical Parts Using Cumulative Damage Theory (누적손상이론을 이용한 기계류부품의 가속수명시험법 개발)

  • Kim, Dae-Cheol;Lee, Geun-Ho;Kim, Hyeong-Ui
    • 연구논문집
    • /
    • s.32
    • /
    • pp.35-43
    • /
    • 2002
  • This study was performed to develop accelerated life test method of machanical parts using cumulative damage theory that used to model the fatigue of parts that receive variable load. The cumulative damage theory was introduced, and the estimation of life and calculation of accelerated life test time was illustrated. As the actual application example, accelerated life test method of agricultural tractor transmission was described. Life distribution of agricultural tractor transmission was supposed to follow Weibull distribution and life test time was calculated under the conditions of average life (MTBF) 3,000 hours and 90% reliability for one test sample. According to the cumulative damage theory, because test time can shorten in case increase test load, test time could be reduced by 482 hours when we put the load 1.1 times of rated load than 0.73 times of rated load that is equivalent load calculated by load spectrum of the agricultural tractor. This time, acceleration coefficient was 11.7. This accelerated test method was used to develop accelerated test method of gear reducer, hydraulic hose and bearing as well as agricultural tractor transmission and it is considered to be applied comprehensively to machanical parts the fatigue of which is happened by load or pressure etc.

  • PDF

Application of Accelerated Vibration Testing to Spot-welding Specimen (점용접 표준시편에 대한 가속내구시험법의 적용)

  • 김관주;조성신;정진성
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.209-213
    • /
    • 2003
  • It is advantage of accelerated vibration testing to compress service exposures to operating vibration into a reduced laboratory test by increasing the amplitude or frequency of the applied input excitations. This paper proposes an accelerated test method to estimate the high-cycle fatigue life under random excitation. The method consists of conducting a test with amplified input excitation and extrapolating linearly the lift in the accelerated condition into the real lift in field condition. The extrapolation is carried out applying the high-cycle irregular excitation fatigue theory including the rainflow counting, Miner’s damage accumulation rule, and Goodman’s mean stress correction. As a verification, those estimated lift is compared with that acquired by experiment f3r the simple case of spot welding specimen with good agreement. This testing procedure will provide an useful scheme that can reduce testing period associated with developing time schedule of new product.

Effect of Mean Stress on Fatigue Properties in Spring Steel (스프링강의 피로 특성에 미치는 평균 응력의 영향)

  • Seok, Chang-Sung;Kim, Hyung-Ick;Chang, Pil-Soo;Joo, Jae-Man;Kang, Jeong-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.255-260
    • /
    • 2003
  • Most of the fatigue test were achieved in fully reversed condition that mean stress is zero. But, generally, mean stress can not be zero. This research was achieved the bending fatigue test that changes mean stress to spring steel and was studied relation with the mean stress and the fatigue life. The method to search effect about mean stress was extended S-N graph in two cases. One method was extended S-N graph using modified Miner's rule with considering damage. Another was extended using tendency of S-N graph. The exponential value(${\alpha}$) of mean stress-alternating stress equation is converged between the Goodman's and the Gerber's value even if fatigue life increases.

  • PDF