• 제목/요약/키워드: test coil

검색결과 508건 처리시간 0.025초

차량 드로틀 보디 전장부품의 품질관리 성능시험 알고리즘 개발 (Development of Algorithm of Surge Test for Quality Control on Electrical Parts of Throttle Body in Automobiles)

  • 손재환;김태한
    • 한국산업융합학회 논문집
    • /
    • 제9권1호
    • /
    • pp.67-72
    • /
    • 2006
  • This study is on the development of algorithm of surge test for quality control on electrical parts of throttle body in automobiles with internal combustion engine, not only to know its condition to be good or not, but also jugding its condition to be classified into six types. To know whether its condition to be good or not, comparing and analyzing between two waveforms generated from master and test coil of throttle body. If test net area is below 20% of master area, the condition of test coil is good. By analyzing test coil waveform to master coil waveform, the condition of test coil into winding badness, insulation badness, layer and corona discharge, short badness should known. Therefore quality control system on electrical parts of throttle body should be developed.

  • PDF

Test Coil과 영구자석의 자기 특성 연구 (Study on Magnetic Property for Test Coil and Permanent Magnet)

  • 박윤범;김종욱;이재선
    • 한국자기학회지
    • /
    • 제26권5호
    • /
    • pp.154-158
    • /
    • 2016
  • 원자력발전소의 원자로에는 노심 반응 속도를 제어하기 위하여 제어봉구동장치가 사용된다. 한국원자력연구원의 SMART 원자로는 원자로 가동 중 제어봉집합체의 위치를 확인하기 위하여 제어봉구동장치에 영구자석과 리드스위치로 구성되는 위치지시기가 설치된다. 원자로 가동 온도는 최대 $350^{\circ}C$로 고려되어 설계되며, 영구자석은 원자로 내에 설치된다. 반면에 리드스위치와 전기회로는 원자로 외부에 설치된다. Test coil은 리드스위치의 품질 검증을 위한 장비로서, 코일과 철심으로 구성되어 있다. 본 연구는 리드스위치에 미치는 Test coil과 영구자석의 자기 특성을 비교하고자 수행되었으며, 유한요소 전자기 시뮬레이션을 활용하였다.

SMES용 초전도코일 제작 및 특성 (Fabrication and Test of a Superconducting Coil for SMES)

  • 김해종;성기철;조전욱;배준한;김석환;심기덕;이언용;권영길;류경우
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제52권11호
    • /
    • pp.557-562
    • /
    • 2003
  • To develop a stable and compact small-sized superconducting magnetic energy storage (SMES) system, which provides electric power with high quality to sensitive electric loads, we fabricated a SMES coil and tested it. Because such a large-sized superconducting coil quenches far away from its critical current, the recovery current is frequently used as a stability criterion in the coil fabrication. Therefore, we first investigated the recovery current characteristics of the large current conductor, which was used in our SMES coil fabrication. The test results indicate that the recovery currents measured in the conductor are nearly identical to those based on the single wire. This implies that the recovery current is affected by the conductor's cooling condition rather than its size and current capacity. In the SMES coil test the first quench occurred at 1250 A, which is equivalent to the stored energy of about 2 MJ. It corresponds to the quench current density of about $130A/mm^2$ This value is much higher in comparison with that reported in the other work. In addition, the first quench current of the coil agrees well with the measured recovery current of the conductor having similar cooling condition with it. This means that to determine the recovery current of a conductor is, first of all, important in the design and fabrication of a large-sized superconducting coil.

Search Coil법의 EMTP 분석을 통한 HVDC 케이블 상세 고장지점 판정 정확도 개선 (Improvement of Detailed Fault Point Decision Using EMTP Analysis of Search Coil Method for HVDC Cables)

  • 정채균;박진우;양병모;강지원;이종범
    • 전기학회논문지
    • /
    • 제60권9호
    • /
    • pp.1656-1662
    • /
    • 2011
  • In a previous paper, the EMTP modeling technique using search coil test is established through various transient analysis including system grounding condition and grounding resistance for HVDC submarine cables. It was also proved by comparison with real test results. Based on this EMTP modeling technique, in this paper, it will be applied for modeling of ${\pm}180kV$ real HVDC submarine system(Jeju~Haenam). This paper variously analyses the effects of fault resistance including the resistance between core and sheath, the resistance between sheath and amore and the resistance between amore and sea water through EMTP modeling of search coil method. The results can contribute to the accuracy of detailed fault point prediction of search coil test for HVDC submarine cables.

KSTAR 프로토 타입 TF 코일 테스트 (Test of the KSTAR Prototype Toroidal Field Coil)

  • 추용;이상일;박갑래;백설희;정우호;임병수;박현기;오영국;김기만
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2003년도 추계학술대회 논문집
    • /
    • pp.307-310
    • /
    • 2003
  • The KSTAR (Korea Superconducting Tokamak Advanced Research) prototype TF (Toroidal Field) coil was tested in the superconducting coil test facility in KBSI (Korea basic Science Institute). The test was divided into several campaigns according to the objectives. The objectives of the first campaign were to cool the coil into operating temperature and to find any defect in the coil such as cold leaks. From the results of the first campaign, which was carried out during Jan. 2003, any defect in the TF prototype coil was not found. At the second campaign, the large-current charging experiment was one of the major issues, and was carried out during Aug. 2003 In this paper, the test preparation, and the test results of the second campaign were presented.

  • PDF

13.2kV/630A급 고온초전도 한류코일 개발 (Development of 13.2kV/630A High-Tc Superconducting Fault Current Limiting Coil)

  • 이찬주;강형구;남관우;고태국;석복렬
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.943-944
    • /
    • 2007
  • In this paper, the development and the test of 13.2kV/630A high-Tc superconducting fault current limiting coil are described. The fault current limiting coil made of Coated Conductor (CC) was fabricated with bifilar winding method for non-inductive characteristics and tested in the distribution power system level in Dec. 2006. In order to determine the length of the superconducting coil, applied voltage per unit length(V/m) was studied analytically and it was verified through experiments. For the volume minimization, the coil was designed with concentrical arrangement method. The short-circuit test was performed with the prospective fault current of asymmetrical 10kA whose maximum fault current was $30kA_{peak}$. In the test, the voltage drop and the current of the coil were measured and the resistance of the coil was obtained. Also, the temperature rise of the coil was calculated with the relationship between the resistance and the temperature of CC. In this paper, the experimental results are analyzed and compared with the simulation.

  • PDF

써칭코일 시험을 통한 HVDC 해저케이블 EMTP 모델링 기법 정립 (Establishment of EMTP Modeling Method Using Searching Coil Test for HVDC Submarine Cables)

  • 정채균;박흥석;양병모;강지원;이종범
    • 전기학회논문지
    • /
    • 제59권9호
    • /
    • pp.1593-1599
    • /
    • 2010
  • This paper describes the EMTP modeling method using searching coil test for HVDC submarine cables. HVDC submarine cables consist of conductor, lead sheath and amore. It is different from general cable which is composed with just conductor and aluminium sheath. Therefore, the transient characteristics are totally different between HVDC submarine cable and general cable. However, the study on HVDC cable modeling and transient are insufficient. In this paper, EMTP modeling is performed according to grounding interval and grounding resistance, then they are compared with real test results by searching coil test.

전자기력 자유벌지 실험을 위한 성형코일 설계 및 3-D 해석비교 (Design of a Free Bulge Test Coil Using Electromagnetic Forces and Comparison between Experimental and Numerical Results)

  • 김홍교;노학곤;강범수;김정
    • 소성∙가공
    • /
    • 제23권7호
    • /
    • pp.431-438
    • /
    • 2014
  • For electromagnetic forming(EMF) the most important feature is a forming coil which creates the electromagnetic force(Lorentz force), using current density and a magnetic field. Most previous papers have concentrated on the final configuration of the blank or the efficiency of EMF process. Studies focused on the design parameters affected by the forming coil performance have not been conducted. In order to design a suitable forming coil for an object, the current study uses LS-DYNA EM-Module to not only optimize the coil but also to examine the effect of coil performance. By this method a suitable forming coil was made and tested to determine whether or not good formability was achieved in a free bulge test Numerical analysis was also used. The workpiece was Al 1100-O with a thickness of 1.27mm and the coil was made from copper CW004A, which has good electrical conductivity and is suitable for electrical components.

철도차량용 코일스프링 횡강성 해석 (Analysis on the Lateral Stiffness of Coil Spring for Railway Vehicle)

  • 허현무;안다훈
    • 한국산학기술학회논문지
    • /
    • 제19권9호
    • /
    • pp.84-90
    • /
    • 2018
  • 철도차량의 거동을 해석하기 위하여 다물체 동역학 모델을 구성함에 있어 현가시스템을 구성하는 스프링, 댐퍼와 같은 현가요소에 대한 스프링강성이나 감쇠계수와 같은 물성치 파악은 매우 중요하다. 그 중 1차, 2차 현가시스템에 주로 활용되고 있는 코일스프링에 대한 동역학 모델을 구성함에 있어 축방향 강성은 도면이나 설계자료에 명확하게 명시되어 있지만 횡방향에 대한 물성은 명시되어 있지 않아 동역학 해석 모델 구성에 어려움을 안고 있다. 따라서 본 논문에서는 철도차량의 현가시스템에 폭 넓게 적용되고 있는 코일스프링에 대한 횡강성을 해석하기 위한 모델에 대하여 검토하고자 한다. 코일스프링 시료에 대한 횡강성을 해석하고자 유한요소해석 방법을 수행하였고 Krettek와 Sobczak의 코일스프링 횡강성 해석모델을 적용하여 수치해석을 수행하였다. 그리고 코일스프링 시료를 대상으로 횡강성 특성시험을 수행하여 해석모델과의 적합성을 검토하였다. 시험결과와 비교한 결과, Krettek와 Sobczak의 코일스프링 횡강성 해석모델을 적용하고 보정계수를 수정한 결과가 시험결과에 근사한 결과를 얻을 수 있었다.

0.7 MJ $\mu$SMES코일 제작을 위한 소형 초전도코일의 특성 (Characteristics of a Small SC Coil for fabrication of the 0.7 MJ $\mu$SMES Coil)

  • 류경우;김해종;성기철;류강식
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제48권1호
    • /
    • pp.13-18
    • /
    • 1999
  • To fabricate a 0.7 FJ, 100 kVA $\mu$SMES device for improving power quality in sensitive electric loads, we developed a design code for a $\mu$SMES device and designed the 0.7 MJ $\mu$SMES device by using it. In this study special emphasis was placed in influence of winding tensions on quench currents of superconducting coils because dry superconducting coils are usually quenched by local disturbances due to strand motions. We first investigated the quench currents of a few kA class superconducting cables for various winding tensions experimentally. To prove the validity of the code and develop all techniques related to fabrication and test of the 0.7 MJ $\mu$SMES device, a smaller size superconducting coil was wound with high winding tension of about 15 kgf/$mm^2$ based on the test results of superconducting cables and tested. It isshown form the test results that designed parameters for the smaller size superconducting coil are in good agreements with measured ones and the quench current of the coil with high winding tension reaches nearly to the critical current of the superconducting cable without any training effects.

  • PDF