• 제목/요약/키워드: test bench

검색결과 393건 처리시간 0.039초

벤치 연비 모사 조건에서 차량용 에어컨 압축기의 특성에 관한 연구 (Study on Characteristics of Car Air-con Compressor Under Bench System Fuel Economy Simulation Condition)

  • 유성연;김영신
    • 대한기계학회논문집B
    • /
    • 제36권7호
    • /
    • pp.705-710
    • /
    • 2012
  • 본 연구에서는, 차량용 에어컨 시스템으로 구성된 벤치 장비에서의 실험을 통하여 에어컨 관련 북미 실차 연비 평가 모드 중의 하나인 SC03 모드 연비 평가의 벤치 모사 시험 가능성을 검증하였다.본 연구에 사용된 설비는 차량용 에어컨 시스템을 실차 조건처럼 구성할 수 있는 각각의 챔버로 구분되어져 있으며, 외부 환경을 재연할 수 있도록 온도와 습도, 풍속을 제어할 수 있도록 구성하였다. 지금까지 실차 환경 풍동에서 평가 되어지던 SC03 모드 연비 평가에 대하여 시스템 벤치에서 모사가 가능하도록 실차에서 가장 중요한 변수인 차속과 차량 전면 풍속에 대응하는 압축기 회전수와 응축기 전면풍속에 대한 신뢰성을 확보하였다.이를 바탕으로 다양한 토출 용량을 가지는 압축기를 가지고 에어컨 시스템 벤치 장비에서 SC03 연비 모사 실험을 수행하여, 압축기 토출량의 차이에 따른 연비의 차이가 특징 지어지는 것을 확인하였다.

수동형 감요수조 설계를 위한 벤치테스터 개발 (Development of Bench Tester for Designing the Passive Anti-Rolling Tanks)

  • 류재문;김효철
    • 대한조선학회논문집
    • /
    • 제52권6호
    • /
    • pp.452-459
    • /
    • 2015
  • It is important to use bench test results in the design process of anti-rolling tanks. Traditional bench tester is usually designed to perform only roll motions about a fixed axis and relatively small so that the viscous effects may not be neglected. Novel bench tester which could adjust the motion center to realize the coupled motion of sway and roll has been devised and manufactured therefore, large scaled bench tester could be utilized for designing the passive anti-rolling tanks. The time history of the reference signal from the rotation sensor of the bench tester have been recorded and processed to determine the phase angle to derive the Response Amplitude Operator(RAO) of the stabilized ship. The breadth of ART tank model should be large up to 2 m to diminish viscous scale effect and the vertical position of the tank can be varied with the ship's center of motion. The periods and the amplitude of roll motion can be varied from 1.5 sec to 5 sec and up to ±20°, respectively. The components of the tester was expressed in three dimensional digital mockup (DMU) and assembled together in the CAD space. The final configuration of the bench tester has been determined by confirming the smooth operation of the moving parts without interference through the animation in CAD space. New analytic logic are introduced for the determination of hydrodynamic moment and phase difference due to fluid motion in ART and verified through the test. The developed bench tester is believed to be effective and accurate for the verification of stabilization effect of ART taking into the consideration of the sway effect in the design stage.

차량 NVH개선 설계를 위한 샤시 구동계의 Driveline Test Bench 구성 및 CAE 해석 (Modeling and CAE Simulation of Chassis Driveline Test Bench for Vehicle NVH Improvement)

  • 김기주;주형준;이용헌;배대성;성창원;백영남;손일선
    • 한국자동차공학회논문집
    • /
    • 제17권1호
    • /
    • pp.114-119
    • /
    • 2009
  • The authors have investigated the NVH problems of drive system in full vehicle test. However it is difficult to define the NVH problems of driveline system. Since it is hard to measure the rotating part and it is vague that only the drive system induces the NVH problem. Vibration in a driveline is presented in this paper. In the experiment, the rear sub-frame and propeller shafts and axle were composed and mounted with rubber each other. For applying the vibration input instead of the torsional vibration effect of an engine, the shaker was taken. In particular, torsional vibration due to fluctuating forced vibration excitation across the joint between driveline and rear sub-frame was carefully examined. Accordingly, the joint response was checked from experiments and the FE-simulation using FRF (frequency response function) analysis was performed. All test results were signal processed and validated against numerical simulations. In present study, the new test bench for measuring the vibration signal and simulating the vehicle chassis system was proposed. The modal value and the mode shape of components were analyzed using the CAE model to identify the important components affecting driveline noise and vibration. It could be reached that the simplified test bench could be well established and be used for design guide and development of the vehicle chassis components.

1축 자세제어실험 장비를 이용한 SIMC 기반 쿼드로터 Cascade 제어기 적용에 관한 연구 (Application of SIMC Based Quad-rotor Cascade Control by Using 1-axis Attitude Control Test-bench)

  • 최윤성;유영진;정진석;강범수
    • 한국항행학회논문지
    • /
    • 제19권6호
    • /
    • pp.473-483
    • /
    • 2015
  • 본 논문에서는 1축 자세제어실험 장비를 제작하여 쿼드로터 형 무인항공기에 적용할 단일입력-단일출력 Cascade 제어기 실험을 수행하였다. 해당 장비는 두 개의 모터와 프로펠러에 의해 자세변화가 가능한 시소 형태로 구현하였고, 무게 추를 변경하여 회전축을 중심으로 상하 무게중심 이동이 가능하도록 제작하였다. 개발한 장비를 통해 Cascade 구조를 가지는 PID(각도)-PID(각속도) 제어기를 구성하여 실험을 수행하였으며, PID 이득의 조정을 용이하게 하는 SIMC 제어기 이득 조정 기법을 Cascade 제어에 접목하였다. 이를 위해 Matlab-Simulink 환경 하에 2차 시간 지연 모델을 구축하여 시스템 변수 추정을 수행하였다. 기존의 SIMC 조정 기법 적용 과정을 수행하여 그 특성을 파악하고, 적용 과정의 안정성 문제를 고려하여 수정된 방안을 제시하였으며, 이를 1축 자세제어실험 장비에 적용하여 기존의 과정과 수정된 과정을 비교 실험하였다.

건물내장재(석고보드, 합판)의 화재성능평가 (The Evaluation of Fire Safety Performance on Interior Finish Materials (Gypsum Board, Plywood))

  • 김충환;김종훈;김운형;하동명;이수경
    • 한국화재소방학회논문지
    • /
    • 제15권3호
    • /
    • pp.55-62
    • /
    • 2001
  • 본 연구는 국내와 외국의 건물 내장재 화재성능평가방법을 고찰하고 국내에는 도입되지 않은 실대 화재실험인 Room Corner Test를 국내 내장재중 석고보드와 합판을 대상으로 그 적용성을 위한 실험을 진행하였다. 현재 국내 내장재의 평가규정은 Bench-Scale Test에 의존하고 있으나, 미국, 일본 유럽등에서는 Room Corner Test를 적용한 실질적인 재료의 화재성능평가를 시행하고 있다. 실험 결과, NFPA 265에 의한 석고보드 및 ISO 9705에 의한 합판의 성능은 양호한 것으로 판단되었다. 현재 국내 내장재에 적용되는 등급분류의 평가방법은 재료의 실제 화재성능 평가에 한계가 있으므로 향후 Room Corner Test의 적용과 더불어 Bench-Scale Test 결과를 토대로 화재성능을 예측하는 화재모델을 이용하는 평가 방법의 도입이 필요하다.

  • PDF

Numerical and experimental study of multi-bench retained excavations

  • Zheng, Gang;Nie, Dongqing;Diao, Yu;Liu, Jie;Cheng, Xuesong
    • Geomechanics and Engineering
    • /
    • 제13권5호
    • /
    • pp.715-742
    • /
    • 2017
  • Earth berms are often left in place to support retaining walls or piles in order to eliminate horizontal struts in excavations of soft soil areas. However, if the excavation depth is relatively large, an earth berm-supported retaining system may not be applicable and could be replaced by a multi-bench retaining system. However, studies on multi-bench retaining systems are limited. The goal of this investigation is to study the deformation characteristics, internal forces and interaction mechanisms of the retaining structures in a multi-bench retaining system and the failure modes of this retaining system. Therefore, a series of model tests of a two-bench retaining system was designed and conducted, and corresponding finite difference simulations were developed to back-analyze the model tests and for further analysis. The tests and numerical results show that the distance between the two rows of retaining piles (bench width) and their embedded lengths can significantly influence the relative movement between the piles; this relative movement determines the horizontal stress distribution in the soil between the two rows of piles (i.e., the bench zone) and thus determines the bending moments in the retaining piles. As the bench width increases, the deformations and bending moments in the retaining piles decrease, while the excavation stability increases. If the second retaining piles are longer than a certain length, they will experience a larger bending moment than the first retaining piles and become the primary retaining structure. In addition, for varying bench widths, the slip surface formation differs, and the failure modes of two-bench retained excavations can be divided into three types: integrated failure, interactive failure and disconnected failure.

부품 및 벤치 실험을 통한 폴리우레탄 유압 왕복 실의 가속 실험 (Component and Bench Tests of Polyurethane Hydraulic Reciprocating Seal for Accelerated Life Testing)

  • 제영완;김한솔;김류운;정구현;안중혁;전홍규
    • Tribology and Lubricants
    • /
    • 제30권5호
    • /
    • pp.271-277
    • /
    • 2014
  • Hydraulic reciprocating seals have been widely used to prevent fluid leakage and to provide lubricant film on counter surface in various hydraulic system. The degradation of the seal may cause the catastrophic failure of the hydraulic system. To assess the durability of the seals and the compatibility with counter surface, accelerated life testing (ALT) has been typically employed from industry. However, ALT often takes up to a few months to cause a failure of the seals, and therefore, there is a need to develop more efficient ALT methods. In this work, the degradation characteristics of polyurethane (PU) seals from field test are investigated and they are compared to those from the component and bench tests, with an aim to contribute to the development of ALT method. From the comparison of the cross-sectional profiles of the sealing surface of the PU specimens before and after the tests, both wear and compression set are found to be responsible for degradation of the PU seals. It is also shown that the major wear mechanisms of the PU seals from the field is abrasive wear and formation of pits. The component and bench tests performed in this work are shown to reproduce such wear mechanisms, and therefore, those test methods can be used as an ALT method for PU seals. In particular, the bench test proposed in this work may be effectively utilized to assess the durability and the compatibility of the seals with the counter surface. The results of this work are expected to aid in the design of ALT for PU seal.

기능성 시제품 생산용 쾌속조형공정의 성능비교시험 (Bench Mark Test on Rapid Prototyping Processes and Machines for Functional Prototypes)

  • 김기대;성주형
    • 한국정밀공학회지
    • /
    • 제23권6호
    • /
    • pp.187-195
    • /
    • 2006
  • FDM, SLS, and EOS processes are the layered manufacturing processes far functional prototypes. In this paper, bench mark tests of those processes were carried out using various materials. The test includes mechanical properties, such as tensile and compressive strengths, hardness, impact strength, and heat resistance, and surface roughness, shape and dimensional accuracy, manufacturing time, and manufacturing costs. It is verified that SLS method is advantageous in surface roughness and manufacturing time, EOS method in shape accuracy, and FDM method is great in manufacturing costs.