• 제목/요약/키워드: test beam

검색결과 2,905건 처리시간 0.033초

Dynamic experimental study on single and double beam-column joints in steel traditional-style buildings

  • Xue, Jianyang;Qi, Liangjie;Yang, Kun;Wu, Zhanjing
    • Structural Engineering and Mechanics
    • /
    • 제63권5호
    • /
    • pp.617-628
    • /
    • 2017
  • In order to study the failure mode and seismic behavior of the interior-joint in steel traditional-style buildings, a single beam-column joint and a double beam-column joint were produced according to the relevant building criterion of ancient architectural buildings and the engineering instances, and the dynamic horizontal loading test was conducted by controlling the displacement of the column top and the peak acceleration of the actuator. The failure process of the specimens was observed, the bearing capacity, ductility, energy dissipation capacity, strength and stiffness degradation of the specimens were analyzed by the load-displacement hysteresis curve and backbone curve. The results show that the beam end plastic hinge area deformed obviously during the loading process, and tearing fracture of the base metal at top and bottom flange of beam occurred. The hysteresis curves of the specimens are both spindle-shaped and plump. The ultimate loads of the single beam-column joint and double beam-column joint are 48.65 kN and 70.60 kN respectively, and the equivalent viscous damping coefficients are more than 0.2 when destroyed, which shows the two specimens have great energy dissipation capacity. In addition, the stiffness, bearing capacity and energy dissipation capacity of the double beam-column joint are significantly better than that of the single beam-column joint. The ductility coefficients of the single beam-column joint and double beam-column joint are 1.81 and 1.92, respectively. The cracks grow fast when subjected to dynamic loading, and the strength and stiffness degradation is also degenerated quickly.

피로수명해석에 의한 지게차용 후차축 주물빔 설계 (Steeraxle Casting Beam Design of Forklift Truck by Fatigue Life Analysis)

  • 박진홍;구재민;이오영;석창성
    • 한국정밀공학회지
    • /
    • 제28권11호
    • /
    • pp.1309-1315
    • /
    • 2011
  • The design process for obtaining the reliable steeraxle casting beam of fork lift truck is studied in this paper, as the casting beam is major component of steeraxle which has a steering function at driving. In this study, the driving mode and damage pattern of casting beam which could be occurred from the customer site were analyzed and it established the design process to predict the fatigue life by FEA(Finite Element Analysis) so that the reliability of steeraxle casting beam could be verified at DVT(Design Validation Test) mode. This paper provides guidance on the process of designing the reliable steeraxle casting beam at the initial design stage and also, provides guidance on the process of solving the problem when the failure is occurred in the field.

Research on rotation capacity of the new precast concrete assemble beam-column joints

  • Han, Chun;Li, Qingning;Wang, Xin;Jiang, Weishan;Li, Wei
    • Steel and Composite Structures
    • /
    • 제22권3호
    • /
    • pp.613-625
    • /
    • 2016
  • The joints of the new prefabricated concrete assemble beam-column joints are put together by the hybrid joints of inserting steel under post-tensioned and non-prestressed force and both beams and columns adopt prefabricated components. The low cyclic loading test has been performed on seven test specimens of beam-column joints. Based on the experimental result, the rotation capacity of the joints is studied and the $M-{\theta}$ relation curve is obtained. According to Eurocode 3: Design of steel structures and based on the initial rotational stiffness, the joints are divided into three types; by equivalent bending-resistant stiffness to the precast beam, the equivalent modulus of elasticity $E_e$ is elicited with the superposition method; the beam length is figured out that satisfies the rigid joints and after meeting the requirements of application and safety, the new prefabricated concrete assemble beam-column joints can be regarded as the rigid joints; the design formula adopted by the standard of concrete joint classification is theoretically derived, thereby providing a theoretical basis for the new prefabricated concrete structure.

Experimental study on two types of new beam-to-column connections

  • Ma, Hongwei;Jiang, Weishan;Cho, Chongdu
    • Steel and Composite Structures
    • /
    • 제11권4호
    • /
    • pp.291-305
    • /
    • 2011
  • The new structure consisting of continuous compound spiral hoop reinforced concrete (CCSHRC)column and steel concrete composite (SCC) beam has both the advantages of steel structures and concrete structures. Two types of beam-to-column connections applied in this structural system are presented in this paper. The connection details are as follows: the main bars in beam concrete pass through the core zone for both types of connections. For connecting bar connection, the steel I-beam webs are connected by bolts to a steel plate passing through the joint while the top and bottom flanges of the beams are connected by four straight and two X-shaped bars. For bolted end-plate connection, the steel I-beam webs are connected by stiffened extended end-plates and eight long shank bolts passing through the core zone. In order to study the seismic behaviour and failure mechanisms of the connections, quasi-static tests were conducted on both types of full-scale connection subassemblies and core zone specimens. The load-drift hysteresis loops show a plateau for the connecting bar connection while they are excellent plump for bolted end-plate connection. The shear capacity formulas of both types of connections are presented and the values calculated by the formula agree well with the test results.

Residual behavior of recycled aggregate concrete beam and column after elevated temperatures

  • Chen, Zongping;Zhou, Ji;Liang, Ying;Ye, Peihuan
    • Structural Engineering and Mechanics
    • /
    • 제76권4호
    • /
    • pp.513-528
    • /
    • 2020
  • This paper presents the results of an experimental study on the residual behavior of reinforced recycled aggregate concrete (RRAC) beam-columns after exposure to elevated temperatures. Two parameters were considered in this test: (a) recycled coarse aggregate (RCA) replacement percentages (i.e. 0, 30, 50, 70 and 100%); (b) high temperatures (i.e. 20, 200, 400, 600, and 800℃). A total of 25 RRAC short columns and 32 RRAC beams were conducted and subjected to different high temperatures for 1 h. After cooling down to ambient temperature, the following basic physical and mechanical properties were then tested and discussed: (a) surface change and mass loss ratio; (b) strength of recycled aggregate concrete (RAC) and steel subjected to elevated temperatures; (c) bearing capacity of beam-columns; (d) load-deformation curve. According to the test results, the law of performance degradation of RRAC beam-columns after exposure to high temperatures is analyzed. Finally, introducing the influence coefficient of RCA replacement percentage and high temperatures, respectively, to correct the calculation formulas of bearing capacity of beam-columns in Chinese Standard, and then the residual bearing capacity of RRAC beam-columns subjected elevated temperatures is calculated according to the modified formulas, the calculated results are in good agreement with the experimental results.

이온빔 보조 증착법을 이용한 STS 316L 박막 합성에 관한 연구 (A Study on the Fabrication of STS 316L Films by Ion Beam Deposition with Ion Source)

  • 이준희;송요승;이건환;이구현;이득용;윤종구
    • 한국재료학회지
    • /
    • 제13권9호
    • /
    • pp.587-592
    • /
    • 2003
  • The thin films of 316L stainless steel were made on glass and S45C substrate by Ion beam assisted deposition with reactive atmosphere of argon and nitrogen. The films were deposited at the various conditions of ion beam power and the ratios of Ar/$N_2$gas. Properties of these films were analyzed by glancing x-ray diffraction method(GXRD), AES, potentiodynamic test, and salt spray test. The results of GXRD showed that austenite phase could be appeared by $N_2$ion beam treatment and the amount of austenite phase increased with the amount of nitrogen gas. The films without plasma ion source treatment had the weak diffraction peak of ferrite phase. But under the Ar plasma ion beam treatment, the strong diffraction peaks of ferrite phase were appeared and the grain size was increased from 12 to 16 nm. Potentiodynamic polarization test and salt spray test indicated that the corrosion properties of the STS 316L films with nitrogen ion source treatment were better than bulk STS 316L steel and STS 316L films with Ar ion source treatment.

U-플랜지 트러스 보의 구조 내력에 관한 실험 연구 (Experimental Study on the Structural Capacity of the U-Flanged Truss Steel Beam)

  • 오명호;김영호;강재윤;김명한
    • 한국공간구조학회논문집
    • /
    • 제18권4호
    • /
    • pp.113-121
    • /
    • 2018
  • U-flanged truss beam is composed of u-shaped upper steel flange, lower steel plate of 8mm or more thickness, and connecting lattice bars. Upper flange and lower plate are connected by the diagonal lattice bars welded on the upper and lower sides. In this study the structural experiments on the U-flanged truss beams with various shapes of upper flange were performed, and the flexural and shear capacities of U-flanged truss beam in the construction stage were evaluated. The principal test parameters were the shape of upper flange and the alignment space of diagonal lattice bars. In all the test specimens, the peak loads were determined by the buckling of lattice bar regardless of the upper flange shape. The test results have shown that the buckling of lattice bar is very important design factor and there is no need to reinforce the basic u-shaped upper flange. However, the early lattice buckling occurred in the truss beam with upper steel bars because of the insufficient strength and stiffness of upper chord, and the reinforcement in the upper chord is necessary. The formulae of Eurocode 3 (2005) have presented more exact evaluations of lattice buckling load than those of KBC 2016.

완전매입형 복합트러스 합성보의 내하력 평가 (The Study on Ultimate Strength of Fully Embedded Composite Truss Beam)

  • 천성봉;원대연;최홍식
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.306-309
    • /
    • 2006
  • The fully embedded composite truss beam is developed based on composite member, truss system before composite and beam system after composite. The proper design concept and method of the fully embedded composite truss beam are discussed. A bending test on the fully embedded composite truss beam with span length 25.0m is carried out to investigate the flexural behavior and ultimate strength of the developed structure up to failure. A good agreement between the measured and predicted results are observed.

  • PDF

깊이 변화에 따른 Wide Beam의 이력거동에 관한 연구 (Hysteretic Behavior of Wide Beam With Variable Depth)

  • 서수연;윤용대;이우진;윤승조
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.165-168
    • /
    • 2003
  • The objective of this paper is to investigate the effective width of wide beam. Three specimens were designed to have different depths of wide beam and to simulate exterior beam-column joint including spandrel beam. Load reversals were applied to the end of wide beam to model behaviors under seismic situation. From the test, it was shown that the strength and effective width of specimens were improved when the depth of specimens increased. The effective width of wide beam depended on the depth of it. Formulas in ACI 318-02 underestimated the effective width of wide beam even though these reflected the contribution of the depth of beam.

  • PDF

토션빔 후륜 현가장치의 기구학적 특성 해석 (Kinematic Analysis of Torsion Beam Rear Suspension)

  • 강주석
    • 한국자동차공학회논문집
    • /
    • 제12권5호
    • /
    • pp.146-153
    • /
    • 2004
  • Torsion beam rear suspension has been widely adopted to the rear suspension of vehicle by reason of simple structure and cost competitiveness. Since the kinematic characteristics of torsion beam rear suspension are determined by elastic behavior of torsion beam, quasi-static analysis based on finite element modeling of torsion beam has been conducted to obtain the kinematic parameters of torsion beam rear suspension. In this paper, simple kinematic equations with rear geometric parameters are derived to predict the kinematic behavior of torsion beam rear suspension. The suspension design parameters such as roll center height, roll stiffness, roll steer and roll camber can be easily obtained with the kinematic equations. The suggested kinematic equations are validated from comparison with the test results and solution offered by ADAMS. The suspension design parameters varied with the position of torsion beam are discussed.