• Title/Summary/Keyword: terpene compounds

Search Result 102, Processing Time 0.027 seconds

Biological Effects of the Leaves and Roots of Ligularia stenocephala (곤달비 잎과 뿌리의 생물 활성)

  • Nam, Young-Joo;Lee, Dong-Ung
    • Journal of Life Science
    • /
    • v.23 no.11
    • /
    • pp.1381-1387
    • /
    • 2013
  • The leaves and roots of Ligularia stenocephala, which are widely used as a food in Korea, were investigated for their antioxidant activities and cytotoxicity in vitro, and their hepatoprotective effect, alcohol detoxicant efficacy, and memory-enhancing property were investigated in vivo. The unique odor of the leaves was analyzed by GC-MS. Lipid peroxidation, superoxide anion formation, and DPPH radicals were inhibited remarkably by the extracts of the leaves and roots. The leaves of this edible plant significantly protected the hepatotoxicity induced by carbon tetrachloride and further diminished the blood alcohol content in mice. While the roots of this plant exhibited adequate cytotoxicity against four human tumor cell lines, especially against melanoma, the leaves revealed relatively weak activity. Both the leaves and the roots exerted an excellent ameliorating property on scopolamine-induced memory impairment in the passive avoidance task using an animal model. The hexane fraction of the leaves was analyzed by GC-MS, suggesting that a series of terpenoids may be odorous compounds in this plant.

Components of phytoncide from a pine forest in the southern temperate zone

  • Lee, Jeong Do;Park, Choong Hee;Joung, Da Wou;Koo, Seung Mo;Park, Bum Jin
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.1
    • /
    • pp.33-44
    • /
    • 2019
  • This study was conducted to examine the components of phytoncide from a pine forest in the southern temperate zone. Recent studies have found that a large amount of phytoncide is released not only from cypress trees but also from pine trees. Because the amount released is the highest during summer, we selected a warm climate region in the southern temperate zone and measured the concentration in the month of August. To capture the phytoncide from the forest atmosphere, we used the adsorption tube method with a mini pump and successfully gathered 9 L of forest air at a flow rate of 150 mL/min. We performed duplicate sampling from two different tubes installed at the same location and derived the mean value. A gas chromatography/mass spectrometer detector with thermal desorption spectroscopy was utilized to perform quantitative and qualitative analyses of the captured material. The results showed that the average phytoncide particle of the pine forest in the southern temperate zone contained a number of components as follows in descending order: ${\alpha}$-Pinene (39%, $0.28ng/m^3$), followed by ${\beta}$-Pinene (16%, $0.11ng/m^3$), D-Limonene (8%, $0.06ng/m^3$), camphor (6%, $0.04ng/m^3$), camphene (6%, $0.04ng/m^3$), and p-Cymene (5%, $0.04ng/m^3$). There were also 13 additional phytoncide components in trace amounts. The results of this study are expected to provide a useful dataset for building a "Healing-forest".

High Plasticity of the Gut Microbiome and Muscle Metabolome of Chinese Mitten Crab (Eriocheir sinensis) in Diverse Environments

  • Chen, Xiaowen;Chen, Haihong;Liu, Qinghua;Ni, Kangda;Ding, Rui;Wang, Jun;Wang, Chenghui
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.2
    • /
    • pp.240-249
    • /
    • 2021
  • Phenotypic plasticity is a rapid response mechanism that enables organisms to acclimate and survive in changing environments. The Chinese mitten crab (Eriocheir sinensis) survives and thrives in different and even introduced habitats, thereby indicating its high phenotypic plasticity. However, the underpinnings of the high plasticity of E. sinensis have not been comprehensively investigated. In this study, we conducted an integrated gut microbiome and muscle metabolome analysis on E. sinensis collected from three different environments, namely, an artificial pond, Yangcheng Lake, and Yangtze River, to uncover the mechanism of its high phenotypic plasticity. Our study presents three divergent gut microbiotas and muscle metabolic profiles that corresponded to the three environments. The composition and diversity of the core gut microbiota (Proteobacteria, Bacteroidetes, Tenericutes, and Firmicutes) varied among the different environments while the metabolites associated with amino acids, fatty acids, and terpene compounds displayed significantly different concentration levels. The results revealed that the gut microbiome community and muscle metabolome were significantly affected by the habitat environments. Our findings indicate the high phenotypic plasticity in terms of gut microbiome and muscle metabolome of E. sinensis when it faces environmental changes, which would also facilitate its acclimation and adaptation to diverse and even introduced environments.

Genome-Based Insights into the Thermotolerant Adaptations of Neobacillus endophyticus BRMEA1T

  • Lingmin Jiang;Ho Le Han;Yuxin Peng;Doeun Jeon;Donghyun Cho;Cha Young Kim;Jiyoung Lee
    • Research in Plant Disease
    • /
    • v.29 no.3
    • /
    • pp.321-329
    • /
    • 2023
  • The bacterium Neobacillus endophyticus BRMEA1T, isolated from the medicinal plant Selaginella involvens, known as its thermotolerant can grow at 50℃. To explore the genetic basis for its heat tolerance response and its potential for producing valuable natural compounds, the genomes of two thermotolerant and four mesophilic strains in the genus Neobacillus were analyzed using a bioinformatic software platform. The whole genome was annotated using RAST SEED and OrthVenn2, with a focus on identifying potential heattolerance-related genes. N. endophyticus BRMEA1T was found to possess more stress response genes compared to other mesophilic members of the genus, and it was the only strain that had genes for the synthesis of osmoregulated periplasmic glucans. This study sheds light on the potential value of N. endophyticus BRMEA1T, as it reveals the mechanism of heat resistance and the application of secondary metabolites produced by this bacterium through whole-genome sequencing and comparative analysis.

The Manufacture of Absorbents and Removal Characteristics of VOCs by Essential Oil and Photocatalyst (식물정유와 광촉매를 이용한 흡수제 제조 및 VOCs 제거특성에 관한 연구)

  • Jeong, Hae-Eun;Yang, Kyeong-Soon;Kang, Min-Kyoung;Cho, Joon-Hyung;Oh, Kwang-Joong
    • Clean Technology
    • /
    • v.23 no.1
    • /
    • pp.54-63
    • /
    • 2017
  • Volatile organic compounds (VOCs) are widely used in both industrial and domestic activities. VOCs are one of the most unpleasant, frequently complaint-rousing factors of pollution around the world. It is now necessary to research and develop an alternative technology that could overcome the problems of the existing odor-control and VOC-eliminating techniques. In this study, essential oil and photocatalytic process was applied in the removal of benzene and toluene, typical VOCs in petrochemistry plant. therefore, this study conducted experiments on the selection of appropriate essential oil, photodegradation, hydroxyl radical generation capacity. The removal efficiency and reaction rate were performed to selecte the type and concentration of essential oil. As a result, removal efficiency of Hinoki Cypress oil was approximately 70% and reaction rate of Hinoki Cypress was high. The results of photolysis experiment, photocatalytic oxidation process showed that the decomposition efficiency of VOCs increased considerably with increasing UV lamp power. In addition, the conversion of VOCs was increased up to $0.1gL^{-1}$ photocatalysts. The hydroxyl radicals measure was performed to determine the ability to generate hydroxyl radicals. The analytical result showed that high $TiO_2$ concentration and lamp power was produced many hydroxyl radical. Experiments of the removal efficiency and reaction rate were performed using essential oil and photooxidation. As a result, the removal efficiency showed that the removal efficiency was increased high temperature and reaction time. The activation energy was calculated from the reaction rate equation at various temperature condition. Activation energy was approximately $18kJmol^{-1}$.

Comparison of Antifungal Activites of Monoterpenes and Sesquiterpenes in Essential Oil from Chamaecyparis obtusa against Dermatophytes (피부사상균에 대한 편백정유의 Mono- 및 Sesquiterpene 항진균 활성 비교)

  • Gwak, Ki-Seob;Park, Mi-Jin;Jeung, Eui-Bae;Chang, Je-Won;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.46-55
    • /
    • 2006
  • This study was to compare the antifungal activitiy of monoterpenes with that of sesquiterpenes, which were major constituents of antifungal active essential oil of Chamaecyparis obtusa, to investigate which constituents had more effective against dermatophytes, and to evaluate the synergistic effect of combination of the antifungal active constituents. The antifungal activities of seven fractions (A, B, C, D, E, F, and G) from C obtusa essential oil by column chromatography were tested against Trichophyton mentagrophytes. Fraction D, E, F, and G were more active than fraction A, B, and C, and their major compounds were mono- and sesquiterpenes analyzed by GC/MS. Borneol, linalool, and ${\alpha}$-terpineol were selected as monoterpenes, and ${\alpha}$-cedrol, nerolidol, and ${\beta}$-eudesmol as sesquiterpenes, respectively. The antifungal activities of the constituents were respectively examined against Trichophyton mentagrophytes (KCTC6077), Microsporum canis (KCTC6591), and Microsporum gypseum. The constituents of sesquiterpenes were more active than those of monoterpenes. By comparing single and combined sesquiterpenes with fraction F containing the higher ratio of sesquiterpenes, combined sesquiterpenes were the most active. This result indicated that there was the synergistic antifungal effect against dermatophytes when sesquiterpenes were combined together.

Investigation of Active Antifungal Compounds of Essential Oil from Chamaecyparis obtusa Against Dermatophytes, Microsporum canis and Trichophyton Mentagrophytes (피부사상균 Microsporum canis 및 Trichophyton mentagrophytes에 대한 편백정유의 항진균활성물질 탐색)

  • Park, Mi-Jin;Lee, Soo-Min;Gwak, Ki-Seob;Jeung, Eui-Bae;Chang, Je-Won;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.3 s.131
    • /
    • pp.72-78
    • /
    • 2005
  • The present study was conducted to evaluate the application of Chamaecyparis obtusa and to investigate potential utilization of essential oil from C. obtusa as plant-based medicine. The antifungal activity of essential oil from leaves and twigs of C. obtusa (Sieb. Et Zucc) was determined and the major components of active fractions against Microsporum canis (KCTC6591) and Trichophyton mentagrophytes (KCTC6077) were identified by GC/MS analysis. In treatment of essential oil from C. obtusa, the strain M. canis was more resistant than the other, T. mentagrophytes. In the agar diffusion assay, essential oil from C. obtusa inhibited hyphal growth of M. canis and T. mentagrophytes at the concentration of more than 5,000 ppm. The zones named B and C in the TLC assay of essential oil from C. obtusa showed antifungal activities. Among four sub-fractions of n-hexane extract from B and C zones, named as B-1, B-2, C-1 and C-2, the C-2 showed the highest antifungal activity. Instrumental GC/MS analysis for sub-fractions showed that a major component of C-1 was ${\alpha}$-terpineol as terpene alcohol, while C-2 contained sesquiterpenes such as elemol, cedrol and eudesmol.

Comparison of Phytoncide (monoterpene) Concentration by Type of Recreational Forest (산림휴양지 유형에 따른 피톤치드(모노테르펜) 농도 비교)

  • Lee, Yong-Ki;Woo, Jung-Sik;Choi, Si-Rim;Shin, Eun-Sang
    • Journal of Environmental Health Sciences
    • /
    • v.41 no.4
    • /
    • pp.241-248
    • /
    • 2015
  • Objectives: This study was conducted to provide scientific and effective information on phytoncides, which are associated with forest healing, and to activate recreational forests. Methods: The target sites were natural recreation forests, a forest park and an arboretum, and the control sites were three urban parks. The samples were collected at a volume of 6.0 L and a flow rate of 0.1 L/min for one hour using a low volume pump and the solid adsorbent sampling method. The phytoncide compounds adsorbed in the Tenax TA tube were analyzed by a automatic heat desorption unit and GC-MS. Results: By type of recreational forest, the annual concentrations of phytoncide (monoterpene) for the forest park showed the highest concentration with $1.450{\mu}g/m^3$, while those for the arboretum showed the lowest concentration at $0.892{\mu}g/m^3$, and thus the concentration of the forest park was approximately 1.6 times higher than the arboretum. The season showing the highest concentration of phytoncides was summer (June) and the forest park was the highest among the recreational forests. The concentrations of major components for phytoncide showed in descending order: ${\alpha}-pinene$, ${\beta}-pinene$, camphene, 3-carene and limonene. The seasonal concentration of ${\alpha}-pinene$, camphene and ${\beta}-pinene$ by type of recreational forest increased in April, which is characterized by low temperature and humidity, and the seasonal concentration of camphene decreased with higher humidity. The meteorological factors which had the high correlation with the concentration of total terpene were temperature and humidity. $CO_2$ and $O_2$ showed an inverse correlation. Conclusion: The major components of phytoncide were ${\alpha}-pinene$, ${\beta}-pinene$, camphene, 3-carene and limonene in descending order of concentration. Further and systematic study on the chemical nature of individual phytoncides, and on the effect of phytoncides on humans needs to be performed.

Major Compound Analysis and Assessment of Natural Essential Oil on Anti-Oxidative and Anti-Microbial Effects (천연 에센셜 오일의 주요 구성물질 분석과 항산화 및 항균 효과에 관한 연구)

  • Shin, Yu-Hyeon;Kim, Hyun-Jung;Lee, Jin-Young;Cho, Young-Je;An, Bong-Jeun
    • Journal of Life Science
    • /
    • v.22 no.10
    • /
    • pp.1344-1351
    • /
    • 2012
  • We studied the physical, chemical, biological, and antimicrobial effects of eight types of essential oils used in the cosmetics industry: lavender, tea tree, rosemary, juniper berry, Chamaecyparis obtusa, cypress, cedar wood, and pine. Lavender oil had a linalyl acetate (an ester chemical compound) content of 48% and radical scavenging activity of 22.36% at 5,000 ppm. Tea tree oil had radical scavenging activity of 43.94% at 5,000 ppm and antimicrobial activity against S. aureus, S. epidermidis, S. mutans, and C. albicans in each 6, 3.5, 6.5, and 5 mm, respectively. Chamaecyparis obtusa oil had the highest acidity (pH 2.64) compared with the other oils, and sesquiterpene compounds were found to have 19.20%. Cedar wood oil had the highest specific gravity and refractive index compared to the other oils and had a sesquiterpene content of 99.73%. The radical scavenging activity of cedar wood essential oil exceeded 39.68% at 5,000 ppm. The clear zone, indicating antimicrobial activity against P. acnes, P. ovale, and C. albicans, was 3.5, 6, and 6 mm, respectively, at a concentration of 1% cedar wood oil. Results showed that with a high sesquiterpene content, the antioxidant effect was generally, but not always, high, suggesting that this is determined according to composition of the compound rather than presence of each antioxidant. The results indicate that antimicrobial activity is determined by the existence of each antimicrobial ingredient rather than terpene composition.

Stand Characteristics and NVOCs Emission Characteristics in Warm Temperate Evergreen Broadleaf Forests and Pinus thunbergii Forest (난대 상록활엽수림과 곰솔림 임분 특성 및 NVOCs 발산 특성)

  • Kim, Gwang-Il;Kim, Sang-Mi;Park, In-Teak;Lee, Kye-Han;Oh, Deuk-Sil
    • Korean Journal of Environment and Ecology
    • /
    • v.36 no.4
    • /
    • pp.402-412
    • /
    • 2022
  • This study investigated each forest's stand characteristics and the NVOCs emission characteristics for Quercus acuta, Castanopsis sieboldii, Dendropanax trifidus, Camellia Japonica which are major warm temperate evergreen broad-leaved species, and Pinus thunbergii. Data were collected from May 2019 to January 2020. The seasonal temperature and humidity of each research site indicated the typical climatic characteristics of Korea, which are hot and humid in summer and cold and dry in winter. Also, the atmospheric pressure was generally high in winter and higher in autumn and winter than in spring and summer. Overall, the total volume of NVOCs (Natural Volatile Organic Compounds) from the five research sites was the highest in the summer. The concentration of TNVOCs was relatively high in the Dendropanax trifidus forest in spring and winter, the Castanopsis sieboldii forest in the autumn, and the Quercus acuta forest in the summer. According to the results of this study, it was confirmed that the concentrations of NVOCs emission of warm temperate evergreen broad-leaved species such as Quercus acuta, Castanopsis sieboldii, Dendropanax trifidus and Camellia Japonica were not lower but rather higher than Pinus thunbergii. The correlation was positive (+) between NVOCs emission and temperature (r=0.590, P=0.000) or humidity (r=0.655, P=0.000), whereas it was negative (-) between NVOCs emission and atmospheric pressure (r=-0.384, P=0.000) or wind speed (r=-0.263, P=0.018). Among the micrometeological factors, humidity (β=0.507, P=0.000) was found to have the greatest effect on NVOC emission, followed by temperature, atmospheric pressure, and wind speed.