• Title/Summary/Keyword: ternary complex

Search Result 84, Processing Time 0.024 seconds

Competitive Adsorption of Multi-species of Heavy Metals onto Sandy Clay Loam and Clay Soils (사질식양토와 식토에서 중금속 이온의 다중 경쟁 흡착)

  • Chung, Doug Y.;Noh, Hyun-Hee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.5
    • /
    • pp.238-246
    • /
    • 2005
  • We conducted this investigation to observe competitive adsorption phenomena among the heavy metals onto the available sorption sites of soil particle surfaces in sandy clay loam and clay soil collected from Nonsan city, Chungnam and Yoosung, Daejeon in Korea, respectively. Polluted and contaminated soils can often contain more than one heavy metal species, resulting in competition for available sorption sites among heavy metals in soils due to complex competitive ion exchange and specific sorption mechanism. And the adsorption characteristics of the heavy metals were reported that the selectivity for the sorption sites was closely related with electropotential and electro negativity carried by the heavy metals. The heavy metals were treated as single, binary and ternary systems as bulk solution phase. Adsorption in multi-element system was different from single-element system as Cr, Pb and Cd. The adsorption isotherms showed the adsorption was increased with increasing equilibrium concentrations. For binary and ternary systems, the amount of adsorption at the same equilibrium concentration was influenced by the concentration of individual ionic species and valence carried by the respective heavy metal. Also we found that the adsorption isotherms of Cd and Pb selected in this experiment were closely related with electronegativity and ionic potential regardless number of heavy metals in solution, while the adsorption of Cr carried higher valance and lower electro negativity than Cd and Pb was higher than those of Cd and Pb, indicating that adsorption of Cr was influenced by ionic potential than by electronegativity. Therefore adsorption in multi-element system could be influenced by electronegativity and ionic potential and valance for the same valance metals and different valance, respectively. But it still needs further investigation with respect to ionic strength and activity in multi-element system to verify sorption characteristics and reaction processes of Cr, especially for ternary system in soils.

Characterization of Heterogeneous Interaction Behaviour in Ternary Mixtures by Dielectric Analysis: The H-Bonded Binary Polar Mixture in Non-Polar Solvent

  • Sengwa, R.J.;Madhvi;Sankhla, Sonu;Sharma, Shobha
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.5
    • /
    • pp.718-724
    • /
    • 2006
  • The heterogeneous association behaviour of various concentration binary mixtures of mono alkyl ethers of ethylene glycol with ethyl alcohol were investigated by dielectric measurement in benzene solutions over the entire concentration range at 25 ${^{\circ}C}$. The values of static dielectric constant $\epsilon_0$ of the mixtures were measured at 1 MHz using a four terminal dielectric liquid test fixture and precision LCR meter. The high frequency limiting dielectric constant $\epsilon_\infty$ values were determined by measurement of refractive index $n_D$ ($\epsilon_\infty\;=\;n_D\;^2$). The measured values of $\epsilon_0$ and $\epsilon_\infty$ were used to evaluate the values of excess dielectric constant $\epsilon^E$, effective Kirkwood correlation factor $g^{eff}$ and corrective correlation factor $g_f$ of the binary polar mixtures to obtain qualitative and quantitative information about the H-bond complex formation. The non-linear behaviour of the observed $\epsilon_0$ values of the polar molecules and their mixtures in benzene solvent confirms the variation in the associated structures with change in polar mixture constituents concentration and also by dilution in non-polar solvents. Appearance of the maximum in $\epsilon^E$ values at different concentration of the polar mixtures suggest the formation of stable adduct complex, which depends on the molecular size of the mono alkyl ethers of ethylene glycol. Further, the observed $\epsilon^E$ < 0 also confirms the heterogeneous H-bond complex formation reduces the effective number of dipoles in these polar binary mixtures. In benzene solutions these polar molecules shows the maximum reduce in effective number of dipoles at 50 percent dilutions. But ethyl alcohol rich binary polar mixtures in benzene solvent show the maximum reduce in effective number of dipoles in benzene rich solutions.

Expression of Porcine Acid-labile Subunit (pALS) of the 150-kilodalton Ternary Insulin-like Growth Factor Complex and Initial Characterization of Recombinant pALS Protein

  • Lee, Dong-Hee;Chun, Choa;Kim, Sang-Hoon;Lee, C.-Young
    • BMB Reports
    • /
    • v.38 no.2
    • /
    • pp.225-231
    • /
    • 2005
  • Acid-labile subunit (ALS) is a component of the 150-kDa insulin-like growth factor-binding protein-3 (IGFBP-3) complex, which, by sequestering the majority of IGFs-I and -II and thereby prolonging the half-life of them in plasma, serves as a circulating reservoir of IGFs in mammalian species. A pGEX-2T plasmid and a baculovirus expression constructs harboring a coding sequence for glutathione-S transferase (GST)-porcine ALS (pALS) fusion protein were expressed in BL21(DE3) E. coli and Sf9 insect cells, respectively. The expressed protein was purified by glutathione or Ni-NTN affinity chromatography, followed by cleavage of the fusion protein using Factor Xa. In addition, pALS and hIGFBP-3 were also produced in small amounts in the Xenopus oocyte expression system which does not require any purification procedure. A 65-kDa pALS polypeptide was obtained following the prokaryotic expression and the enzymatic digestion, but biochemical characterization of this polypeptide was precluded because of an extremely low expression efficiency. The baculovirus-as well as Xenopus-expressed pALS exhibited the expected molecular mass of 85 kDa which was reduced into 75 and 65 kDa following deglycosylation of Asn-linked carbohydrates by Endo-F glycosidase, indicating that the expressed pALS was properly glycosylated. Moreover, irrespective of the source of pALS, the recombinant pALS and hIGFBP-3 formed a 130-kDa binary complex which could be immunoprecipitated by anti-hIGFBP-3 antibodies. Collectively, results indicate that an authentic pALS protein can be produced by the current expression systems.

Selection of Suitable Micellar Catalyst for 1,10-Phenanthroline Promoted Chromic Acid Oxidation of Formic Acid in Aqueous Media at Room Temperature

  • Ghosh, Aniruddha;Saha, Rumpa;Ghosh, Sumanta K.;Mukherjee, Kakali;Saha, Bidyut
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.6
    • /
    • pp.703-711
    • /
    • 2013
  • In the present investigation, kinetic studies of oxidation of formic acid with and without catalyst and promoter in aqueous acid media were studied under the pseudo-first order conditions [formic acid]T ${\gg}[Cr(VI)]_T$ at room temperature. In the 1,10-phenanthroline (phen) promoted path, the cationic Cr(VI) phen complex is the main active oxidant species undergoes a nucleophilic attack by the substrate to form a ternary complex which subsequently experiences a redox decomposition through several steps leading to the products $CO_2$ and $H_2$ along with the Cr(III) phen complex. The anionic surfactant (i.e., sodium dodecyl sulfate, SDS) and neutral surfactant (i.e., Triton X-100, TX-100) act as catalyst and the reaction undergo simultaneously in both aqueous and micellar phase with an enhanced rate of oxidation in the micellar phase. Whereas the cationic surfactant (i.e., N-cetyl pyridinium chloride, CPC) acts as an inhibitor restricts the reaction to aqueous phase. The observed net enhancement of rate effects has been explained by considering the hydrophobic and electrostatic interaction between the surfactants and reactants. The neutral surfactant TX-100 has been observed as the suitable micellar catalyst for the phen promoted chromic acid oxidation of formic acid.

Effect of Soil Organic Matter on Arsenic Adsorption in the Hematite-Water Interface: Chemical Speciation Modeling and Adsorption Mechanism (비소의 적철석 표면 흡착에 토양유기물이 미치는 영향: 화학종 모델링과 흡착 기작)

  • Ko, Il-Won;Kim, Ju-Yong;Kim, Gyeong-Ung;An, Ju-Seong;Davis, A. P.
    • Economic and Environmental Geology
    • /
    • v.38 no.1
    • /
    • pp.23-31
    • /
    • 2005
  • This study was performed to investigate the effect of humic acid on the adsorption of arsenic onto hematite and its binding mechanism through the chemical speciation modeling in the binary system and the adsorption modeling in the ternary system. The complexation modeling of arsenic and humic acid was suitable for the binding model with the basis of the electrostatic repulsion and the effect of bridging metal. In comparison with the experimental adsorption data in the ternary system, the competitive adsorption model from the binary intrinsic equilibrium constants was consistent with the amount of arsenic adsorption. However, the additive rule showed the deviation of model in the opposite way of cationic heavy metals, because the reduced organic complexation of arsenic and the enhanced oxyanionic competition diminished the adsorption of arsenic. In terms of the reaction mechanism, the organic complex of arsenic, neutral As(III) and oxyanionic As(V) species were transported and adsorbed competitively to the hematite surface forming the inner-sphere complex in the presence of humic acid.

Morphological, Mechanical and Rheological Properties of Poly(acrylonitrile-butadiene-styrene)/Polycarbonate/Poly$({\varepsilon}-caprolactone)$ Ternary Blends

  • Hong, John-Hee;Song, Ki-Heon;Lee, Hyung-Gon;Han, Mi-Sun;Kim, Youn-Hee;Kim, Woo-Nyon
    • Macromolecular Research
    • /
    • v.15 no.6
    • /
    • pp.520-526
    • /
    • 2007
  • The effects of poly($({\varepsilon}$-caprolactone) (PCL) on poly(acrylonitrile-butadiene-styrene) (ABS) and polycarbonate (PC) blends were studied. Blends of ABS/PC (70/30, wt%) with PCL as a compatibilizer were prepared by a twin screw extruder. From the glass transition temperature $(T_g)$ results of the ABS/PC blends with PCL, the $T_g$(PC) of the ABS/PC (70/30) blends decreased with increasing PCL content. From the results of the morphology of the ABS/PC (70/30) blends with PCL, the phase separation between the ABS and PC phases became less significant after adding PCL in the ABS/PC blends. In addition, the morphological studies of the ABS/PC blends etched by NaOH indicated that the shape of the droplet was changed from regular round to irregular round by adding PCL in the ABS/PC blends. These results for the mechanical properties of the ABS/PC blends with PCL indicated that the tensile, flexural and impact strengths of the ABS/PC (70/30) blends peaked at a PCL content of 0.5 phr. From the results for the rheological properties of the ABS/PC (70/30) blends with PCL content, the storage modulus, loss modulus and complex viscosity increased at PCL content up to 5 phr. From the above results of the $T_g$, mechanical properties, morphology and complex viscosity of the ABS/PC blends with PCL, it was concluded that the compatibility was increased with PCL addition in the ABS/PC (70/30, wt%) blends and that the optimum concentration of PCL as a compatibilizer is 0.5 phr.

Purification and Properties of Glucose 6-Phosphate Dehydrogenase from Aspergillus aculeatus

  • Ibraheem, Omodele;Adewale, Isaac Olusanjo;Afolayan, Adeyinka
    • BMB Reports
    • /
    • v.38 no.5
    • /
    • pp.584-590
    • /
    • 2005
  • Glucose 6-phosphate dehydrogenase (EC 1.1.1.49) was purified from Aspergillus aculeatus, a filamentous fungus previously isolated from infected tongue of a patient. The enzyme, apparently homogeneous, had a specific activity of $220\;units\;mg^{-1}$/, a molecular weight of $105,000{\pm}5,000$ Dal by gel filtration and subunit size of $52,000{\pm}1,100$ Dal by sodium dodecyl sulphate-polyacrylamide gel electrophoresis. The substrate specificity was extremely strict, with glucose 6-phosphate (G6P) being oxidized by nicotinamide adenine dinucleotide phosphate (NADP) only. At assay pH of 7.5, the enzyme had $K_m$ values of $6\;{\mu}m$ and $75\;{\mu}m$ for NADP and G6P respectively. The $k_{cat}$ was $83\;s^{-1}$. Steady-state kinetics at pH 7.5 produced converging linear Lineweaver-Burk plots as expected for ternary-complex mechanism. The patterns of product and dead-end inhibition suggested that the enzyme can bind NADP and G6P separately to form a binary complex, indicating a random-order mechanism. The enzyme was irreversibly inactivated by heat in a linear fashion, with G6P providing a degree of protection. Phosphoenolpyruvate (PEP), adenosinetriphosphate (ATP), and fructose 6-phosphate (F6P), in decreasing order, are effective inhibitors. Zinc and Cobalt ions were effective inhibitors although cobalt ion was more potent; the two divalent metals were competitive inhibitors with respect to G6P, with $K_i$ values of $6.6\;{\mu}m$ and $4.7\;{\mu}m$ respectively. It is proposed that inhibition by divalent metal ions, at low NADPH /NADP ratio, is another means of controlling pentosephosphate pathway.

Severity-based Fault Prediction using Unsupervised Learning (비감독형 학습 기법을 사용한 심각도 기반 결함 예측)

  • Hong, Euyseok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.3
    • /
    • pp.151-157
    • /
    • 2018
  • Most previous studies of software fault prediction have focused on supervised learning models for binary classification that determines whether an input module has faults or not. However, binary classification model determines only the presence or absence of faults in the module without considering the complex characteristics of the fault, and supervised model has the limitation that it requires a training data set that most development groups do not have. To solve these two problems, this paper proposes severity-based ternary classification model using unsupervised learning algorithms, and experimental results show that the proposed model has comparable performance to the supervised models.

An Interferon Resistance Induced by the Interaction between HCV NS5B and Host p48 (C형 간염 바이러스 NS5B 단백질과 숙주의 p48 단백질의 상호작용에 의한 인터페론 저항성의 유도)

  • Park, So-Yeon;Lee, Jong-Ho;Myung, Hee-Joon
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.4
    • /
    • pp.353-359
    • /
    • 2008
  • Hepatitis C virus (HCV) is known as the causative agent of blood transmitted hepatitis. Two viral proteins, E2 and NS5A, are known to exert interferon resistance of HCV via PKR pathway. Here, we report a third protein, the RNA-dependent RNA polymerase (NS5B) of HCV, induced interferon resistance inhibiting p56 pathway. p56 was shown to interact with p48 subunit of eukaryotic initiation factor 3 (eIF3). This interaction inhibited formation of ternary complex in translation initiation. Using dual reporter assay system, we observed that the translation decreased when interferon alpha was added to the culture. But, in the presence of HCV NS5B, the translation partly recovered. NS5B and p48 subunit of eIF3 were shown to interact. This interaction seems to inhibit the interaction between p48 and p56. This is the first report that a virus exerts interferon resistance via p56 pathway.

Chemical Equilibrium and Synergism for Solvent Extraction of Trace Lithium with Thenoyltrifluoroacetone in the Presence of Trioctylphosphine Oxide

  • Kim, Young-Sang;In, Gyo;Choi, Jong-Moon
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.10
    • /
    • pp.1495-1500
    • /
    • 2003
  • Equilibria and applications of a synergistic extraction were studied for the determination of a trace lithium by using thenoyltrifluoroacetone (TTA) and trioctylphosphine oxide (TOPO) as ligands. Several equations were derived for the extraction of lithium into m-xylene as a phase of Li-TTA·mTOPO adduct. Distribution coefficients and extraction constant were determined together with a stability constant of the adduct. The adduct was quantitatively extracted from the basic solution of higher than pH 9 by shaking for 30 minutes. m-Xylene was selected as an optimum solvent by comparing the extraction efficiency among several kinds of organic solvents. The stability constant (${\Beta}_2$) for Li-TTA/2TOPO was 150 times higher than Li-TTA/TOPO. The distribution coefficient of Li-TTA/2TOPO into m-xylene was 9.12 and the logarithmic extraction constant (log $K_{ex}$) was 6.76. Trace lithium of sub-ppm level in seawater samples could be determined under modified conditions and a detection limit equivalent to 3 times standard deviation for background absorption was 0.42 ng/mL.