• 제목/요약/키워드: terahertz time domain spectroscopy

검색결과 60건 처리시간 0.023초

Quantitative Label-free Terahertz Sensing of Transdermal Nicotine Delivered to Human Skin

  • Lee, Gyuseok;Namkung, Ho;Do, Youngwoong;Lee, Soonsung;Kang, Hyeona;Kim, Jin-Woo;Han, Haewook
    • Current Optics and Photonics
    • /
    • 제4권4호
    • /
    • pp.368-372
    • /
    • 2020
  • We report the terahertz time-domain spectroscopy (THz-TDS) of transdermal drug delivery in human skin. The time evolution of transdermal nicotine delivery in nicotine patches was assessed by detecting the transmission coefficient of sub-picosecond THz pulses and using a semi-analytic model based on the single-layer effective medium approximation. Using commercial nicotine patches (Nicoderm CQ®, 7 mg/24 h), THz transmission coefficients were measured to quantitatively analyze the cumulative amounts of nicotine released from the patches in the absence of their detailed specifications, including multilayer structures and optical properties at THz frequencies. The results agreed well with measurements by conventional in vitro and in vivo methods, using a diffusion cell with high-performance liquid chromatography and blood sampling respectively. Our study revealed the ability of the THz-TDS method to be an effective alternative to existing methods for noninvasive and label-free assessments of transdermal drug delivery, showing its high promise for biomedical, pharmaceutical, and cosmetic applications.

Pr3+ 도핑된 셀레나이드 유리의 테라헤르츠 광학 특성 (THz Optical Properties of Pr3+-Doped Selenide Glasses)

  • 강승범;정동철;곽민환
    • 한국전기전자재료학회논문지
    • /
    • 제30권11호
    • /
    • pp.745-750
    • /
    • 2017
  • Terahertz time-domain spectroscopy has been used to study the optical properties of $Pr^{3+}-doped$ selenide glasses. The complex refractive indexes of $Pr^{3+}-selenide$ glasses were measured in a frequency range from 0.3 to 1.5 THz. The real and imaginary refractive indexes increased with increasing frequency and $Pr^{3+}$ ion concentration. The obtained result indicated that the phonon modes of the $Pr^{3+}-doped$ selenide glasses shift to lower frequencies with the concentration of $Pr^{3+}$ ions. The theory of far-infrared absorption in amorphous materials was used to analyze the results. The measured data showed that the disorder-induced terahertz absorption increased with increasing $Pr^{3+}$ ion concentration.

테라헤르츠 영역에서 분말 이산화규소의 도전률 측정에 관한 연구 (The Conductivity of Silica Sand by Terahertz Electromagnetic Pulses)

  • 전태인;김근주
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2001년도 춘계종합학술대회
    • /
    • pp.303-306
    • /
    • 2001
  • 본 연구는 테라헤르츠 시간영역 분광법 (THz time-domain spectroscopy : THz-TDS)을 이용하여 광학 및 전기 전자 재료로 널리 사용되는 이산화규소의 흡수율과 도전율을 각각 테라헤르츠 주파수 영역에서 측정하였다. 입자 형태로 구성된 이산화규소의 재료는 기존의 접촉식인 Hall 측정이나 4-point probe 측정으로는 그 전기적 특성 분석이 불가능하지만, THz-TDS 방법은 비접촉식 방법으로 전기적 특성뿐만 아니라 광학적 특성 분석도 가능하다. 또한 기존의 전기적 폭정 장치는 DC 영역에서만 가능하지만, 본 방법은 테라헤르츠 주파수 영역에 따른 그 특성을 분석 할 수 있다. 특히 도전율은 금속 및 반도체와 달리 테라헤르츠 주파수가 증가함에 따라 증가하였는데, 이러한 결과는 Drude 이론을 따르지 않음을 확인하였다.

  • PDF

Terahertz transmission through femtosecond-machined metal structures

  • Lee, J.U.;Seo, M.;Kim, D.S.;Jeoung, S.C.;Park, Q-Han
    • 한국레이저가공학회:학술대회논문집
    • /
    • 한국레이저가공학회 2005년도 춘계학술발표대회 논문집
    • /
    • pp.102-103
    • /
    • 2005
  • Using THz time-domain spectroscopy, we study plasmonic band gaps in periodic metal arrays of slits. Femtosecnd machining system guarantees good quality sub millimeter structures for THz spectroscopy. Fabry-Perot effect enhances the transmission when the two resonances cross but does not alter the surface plasmon peak positions.

  • PDF

산업용 테라헤르츠 비파괴 검사 기술 (Terahertz Non-destructive Testing Technology for Industrial Applications)

  • 이의수;문기원;이일민;박동우;최다혜;신준환;김현수;박정우;박경현
    • 전자통신동향분석
    • /
    • 제33권3호
    • /
    • pp.59-69
    • /
    • 2018
  • Terahertz (THz) imaging and spectroscopy have been developed as non-destructive testing methods for various industrial applications. However, they have not been widely adopted in real applications owing to a high system price and the large size of conventional THz time-domain spectroscopy systems, which are based on ultrashort optical pulse lasers. Recently, various types of compact THz emitters and detectors have become available. As a result, THz non-destructive test (NDT) systems have become viable solutions. Herein, we briefly review the recent advances in THz NDT techniques adopting continuous-wave THz systems, including our recent results of a THz-based waterproof test system and an electrical connection inspection system for car manufacturing.

Terahertz Spectral Characteristics of Electrolyte Solutions under Different Magnetic Fields

  • Shao, Siyu;Huang, Haiyun;Peng, Bo;Wang, Guoyang;Ye, Ping;Wang, Jiahui;Su, Bo;Cui, Hailin;Zhang, Cunlin
    • Current Optics and Photonics
    • /
    • 제6권3호
    • /
    • pp.337-343
    • /
    • 2022
  • Microfluidic chips are new devices that can manipulate liquids at the micrometer level, and terahertz (THz) time-domain spectroscopy has good applicability in biochemical detection. The combination of these two technologies can shorten the distance between sample and THz wave, reduce THz wave absorption by water, and more effectively analyze the kinetics of biochemical reactions in aqueous solutions. This study investigates the effects of different external magnetic field intensities on the THz transmission characteristics of deionized water, CuSO4, CuCl2, (CH3COO)2Cu, Na2SO4, NaCl, and CH3COONa; the THz spectral intensity of the sample solutions decrease with increasing intensity of the applied magnetic field. Analysis shows that the magnetic field leads to a change in the dipole moment of water molecules in water and electrolyte solutions, which enhances not only the hydrogen-bond networking ability of water but also the hydration around ions in electrolyte solutions, increasing the number of hydrogen bonds. Increasing the intensity of this magnetic field further promotes the hydrogen-bond association between water molecules, weakening the THz transmission intensity of the solution.

Optical and Dielectric Properties of Chalcogenide Glasses at Terahertz Frequencies

  • Kang, Seung-Beom;Kwak, Min-Hwan;Park, Bong-Je;Kim, Sung-Il;Ryu, Han-Cheol;Chung, Dong-Chul;Jeong, Se-Young;Kang, Dae-Won;Choi, Sang-Kuk;Paek, Mun-Cheol;Cha, Eun-Jong;Kang, Kwang-Yong
    • ETRI Journal
    • /
    • 제31권6호
    • /
    • pp.667-674
    • /
    • 2009
  • Terahertz time-domain spectroscopy has been used to study the optical and dielectric properties of three chalcogenide glasses: $Ge_{30}As_8Ga_2Se_{60}$, $Ge_{35}Ga_5Se_{60}$, and $Ge_{10}As_{20}S_{70}$. The absorption coefficients ${\alpha}({\nu})$, complex refractive index n(${\nu}$), and complex dielectric constants ${\varepsilon}({\nu})$ were measured in a frequency range from 0.3 THz to 1.5 THz. The measured real refractive indices were fitted using a Sellmeier equation. The results show that the Sellmeier equation fits well with the data throughout the frequency range and imply that the phonon modes of glasses vary with the glass compositions. The theory of far-infrared absorption in amorphous materials is used to analyze the results and to understand the differences in THz absorption among the sample glasses.