Browse > Article
http://dx.doi.org/10.4313/JKEM.2017.30.11.745

THz Optical Properties of Pr3+-Doped Selenide Glasses  

Kang, Seung Beom (Korea Institute of Carbon Convergence Technology)
Chung, Dong Chul (Korea Institute of Carbon Convergence Technology)
Kwak, Min Hwan (Department of Electrical Engineering, Changwon Moonsung University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.30, no.11, 2017 , pp. 745-750 More about this Journal
Abstract
Terahertz time-domain spectroscopy has been used to study the optical properties of $Pr^{3+}-doped$ selenide glasses. The complex refractive indexes of $Pr^{3+}-selenide$ glasses were measured in a frequency range from 0.3 to 1.5 THz. The real and imaginary refractive indexes increased with increasing frequency and $Pr^{3+}$ ion concentration. The obtained result indicated that the phonon modes of the $Pr^{3+}-doped$ selenide glasses shift to lower frequencies with the concentration of $Pr^{3+}$ ions. The theory of far-infrared absorption in amorphous materials was used to analyze the results. The measured data showed that the disorder-induced terahertz absorption increased with increasing $Pr^{3+}$ ion concentration.
Keywords
THz time-domain spectroscopy; $Pr^{3+}-doped$ selenide glass; THz optical property;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Kojima, H. Kitahara, S. Nishizawa, Y. S. Yang, and M. W. Takeda, J. Mol. Struct., 744, 243 (2005). [DOI: https://doi.org/10.1016/j.molstruc.2004.10.045]
2 S. B. Kang, M. H. Kwak, B. J. Park, S. Kim, H. C. Ryu, D. C. Chung, S. Y. Jeong, D. W. Kang, S. K. Choi, M. C. Paek, E. J. Cha, and K. Y. Kang, Electron. Telecommun. Res. Inst., 31, 667 (2009). [DOI: https://doi.org/10.4218/etrij.09.1209. 0028]
3 T. D. Dorney, R. G. Baraniuk, and D. M. Mittleman, J.. Opt. Soc. Am. A, 18, 1562 (2001). [DOI: https://doi.org/10.1364/JOSAA.18.001562]   DOI
4 E. Schlomann, Phys. Rev., 135, A413 (1964). [DOI: https://doi.org/10.1103/PhysRev.135.A413]   DOI
5 U. Strom, J. R. Hendrickson, R. J. Wagner, and P. C. Taylor, Solid State Commun., 15, 1871 (1974). [DOI: https://doi.org/10.1016/0038-1098(74)90106-9]
6 D. Lezal, J. Pedlikova, J. Zavadil, P. Kostka, and M. Poulain, J. Non-Cryst. Solids, 326, 47 (2003). [DOI: https://doi.org/10.1016/S0022-3093(03)00375-2]   DOI
7 A. Zakery and S. R. Elliott, J. Non-cryst. Solids, 330, 1 (2003). [DOI: https://doi.org/10.1016/j.jnoncrysol.2003.08.064]   DOI
8 V. Moizan, V. Nazabal, J. Troles, P. Houizot, J. L. Adam, J. L. Doualan, R. Moncorge, F. Smektala, G. Gadret, S. Pitois, and G. Canat, Opt. Mater., 31, 39 (2008). [DOI: https://doi.org/10.1016/j.optmat.2008.01.005]   DOI
9 J. Nishii, S. Morimoto, I. Inagawa, R. Iizuka, T. Yamashita, and T. Yamagishi, J. Non-Cryst. Solids, 140, 199 (1992). [DOI: https://doi.org/10.1016/S0022-3093(05)80767-7]   DOI
10 J. S. Sanghera and I. D. Aggarwal, J. Non-Cryst. Solids, 256, 6 (1999). [DOI: https://doi.org/10.1016/S0022-3093(99)00484-6]   DOI
11 B. J. Park, H. S. Seo, J. T. Ahn, Y. G. Choi, D. Y. Jeon, and W. J. Chung, J. Lumin., 128, 1617 (2008). [DOI: https://doi.org/10.1016/j.jlumin.2008.03.011]   DOI
12 Y. G. Choi, B. J. Park, K. H. Kim, and J. Heo, Electron. Telecommun. Res. Inst., 23, 97 (2001). [DOI: https://doi.org/10.4218/etrij.01.0101.0301]
13 W. J. Chung, H. S. Seo, B. J. Park, J. T. Ahn, and Y. G. Choi, Electron. Telecommun. Res. Inst., 27, 411 (2005). [DOI: https://doi.org/10.4218/etrij.05.0105.0005]
14 L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, IEEE J. Quantum Electron., 37, 1127 (2001). [DOI: https://doi.org/10.1109/3.945317]   DOI
15 M. Naftaly and R. E. Miles, J. Non-Cryst. Solids, 351, 3341 (2005). [DOI: https://doi.org/10.1016/j.jnoncrysol.2005.08.003]   DOI