• Title/Summary/Keyword: terahertz (THz) communication

Search Result 21, Processing Time 0.022 seconds

Terahertz Time Domain Spectroscopy, T-Ray Imaging and Wireless Data Transfer Technologies

  • Paek, Mun-Cheol;Kwak, Min-Hwan;Kang, Seung-Beom;Kim, Sung-Il;Ryu, Han-Cheol;Choi, Sang-Kuk;Jeong, Se-Young;Kang, Dae-Won;Jun, Dong-Suk;Kang, Kwang-Yong
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.3
    • /
    • pp.158-165
    • /
    • 2010
  • This study reviewed terahertz technologies of time domain spectroscopy, T-ray imaging, and high rate wireless data transfer. The main topics of the terahertz research area were investigation of materials and package modules for terahertz wave generation and detection, and setup of the terahertz system for time domain spectroscopy(TDS), T-ray imaging and sub-THz wireless communication. In addition to Poly-GaAs film as a photoconductive switching antenna material, a table-top scale for the THz-TDS/imaging system and terahertz continuous wave(CW) generation systems for sub-THz data transfer and narrow band T-ray imaging were designed. Dielectric properties of ferroelectric BSTO($Ba_xSr_{1-x}TiO_3$) films and chalcogenide glass systems were characterized with the THz-TDS system at the THz frequency range. Package modules for terahertz wave transmitter/receiver(Tx/Rx) photoconductive antenna were developed.

Performance Comparison of Single-Carrier and Multi-Carrier Systems in a Terahertz Wireless Communication Environment

  • Asiedu, Derek Kwaku Pobi;Ahiadormey, Roger Kwao;Shin, Suho;Lee, Kyoung-Jae
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.9 no.1
    • /
    • pp.11-24
    • /
    • 2019
  • This paper investigates the performance comparison of a Terahertz (THz) communications for a single-carrier and a multi-carrier single antenna point-to-point communication system. The multi-carrier system and single carrier system consider the orthogonal frequency division multiplexing (OFDM) and the minimum mean square error linear equalizer (MMSE-LE), respectively. We compare the frame-error-rate (FER) and throughput performance of both the systems for a THz communication environment with the carrier frequency of 300GHz and the tapped delay line (TDL) channel models described in 3GPP. It is observed from the simulation results that the OFDM systems outperform the MMSE-LE for various configurations.

Design and Performance Analysis of a Multi Wavelength Terahertz Modulator Based on Triple-Lattice Photonic Crystals

  • Ji, Ke;Chen, Heming;Zhou, Wen
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.5
    • /
    • pp.589-593
    • /
    • 2014
  • Terahertz (THz) communication has important applications in high-speed and ultra broadband wireless access networks. The THz modulator is one of the key devices in a THz communications system. Wavelength division multiplexing (WDM) can expand the capacity of THz communications systems, so research on multi wavelength THz modulators has significant value. By combining photonic-crystal and THz technology, a novel type of multi wavelength THz modulator based on a triple-lattice photonic crystal is proposed in this paper. Compared to a compound-lattice photonic crystal, a triple-lattice photonic crystal has a larger gap width of 0.196. Simulation results show that six beams of THz waves can be modulated simultaneously with high performance. This modulator's extinction ratio is as large as 34.25 dB, its insertion loss is as low as 0.147 dB, and its modulation rate is 2.35 GHz.

Broad Dual-band Metamaterial Filter with Sharp Out-of-band Rejections

  • Qi, Limei;Shah, Syed Mohsin Ali
    • Current Optics and Photonics
    • /
    • v.2 no.6
    • /
    • pp.629-634
    • /
    • 2018
  • A broad dual-band terahertz metamaterial filter with sharp out-of-band rejections is designed and demonstrated. The center frequencies of the first and the second bands occur at 0.35 THz and 0.96 THz with 3 dB relative bandwidth of 31% and 17%, respectively. Results are measured using a THz time-domain spectroscopy system that shows agreement with simulations. Physical mechanisms of the broad dual-band resonance are clarified based on transmissions of different structures and surface current density distributions. Influence of structure parameters on the transmission characteristics are discussed. Symmetry of the structure ensures the filter polarization independence at normal incidence. These results supported by the design of the filter could find applications in broad multi-band sensors, terahertz communication systems, and other emerging terahertz technologies.

Outage Probability for Cooperative Nano Communication in the THz Gap Frequency Range

  • Samarasekera, A. Chaminda J.;Shin, Hyundong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.102-122
    • /
    • 2017
  • Nanotechnology has provided a set of tools that the engineers can use to design and manufacture integrated nano devices, which are capable of performing sensing, computing, data storing and actuation. One of the main hurdles for nano devices has been the amount of power that it can generate for transmission of data. In this paper, we proposed cooperative nano communication in the Terahertz (THz) Gap frequency band to increase the range of transmission. Outage probability (OP) performances for the proposed cooperative nano communication networks in the THz band (0.1 - 10THz) have been evaluated for the following scenarios; A) A single decode-and-forward (DF) relay over independent identically distributed (i.i.d.) Rayleigh fading channels, B) DF multi-relay network with best relay selection (BRS) over i.i.d. Rayleigh fading channels, and C) DF multi-relay network with multiple hops with BRS over i.i.d. Rayleigh fading channels. The results show that the transmission distance can be improved significantly by employing DF relays. Also, it is shown that by increasing the number of hops in a relay the OP performance is marginally degraded. The analytical results have been verified by Monte-Carlo simulation.

Improvement of Two-Dimensional Terahertz Image by Digital Image Processing (데이터 처리를 통한 테라헤르츠 (THz) 파의 2차원 이미지 개선)

  • Shon, Chae-Hwa;Jin, Yun-Sik;Jeon, Seuk-Gy;Kim, Keun-Ju;Jung, Sun-Shin;Yong, Chong-Won
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.6
    • /
    • pp.500-507
    • /
    • 2005
  • Two-dimensional (2D) images that are produced by terahertz (THz) irradiation we presented. It is possible to obtain 2D image of various materials by observing the amplitude and the phase of the THz signals which go through them. Better images are produced by combining the amplitude and phase of the signal rather than using only one of these. Homomorphic filtering that is one elf the well-known technique of digital image signal processing is effective to reduce the noise signal and can provide better quality images. The results can be applied to real-time imaging afterwards.

Experimental demonstration of uncompressed 4K video transmission over directly modulated distributed feedback laser-based terahertz wireless link

  • Eon-Sang Kim;Sang-Rok Moon;Minkyu Sung;Joon Ki Lee;Seung-Hyun Cho
    • ETRI Journal
    • /
    • v.45 no.2
    • /
    • pp.193-202
    • /
    • 2023
  • We demonstrate the transmission of uncompressed 4K videos over the photonics-based terahertz (THz) wireless link using a directly modulated distributed feedback laser diode (DFB-LD). For optical heterodyne mixing and data modulation, a DFB-LD was employed and directly modulated with a 5.94-Gb/s non-return-to-zero signal, which is related to a 6G-serial digital interface standard to support ultra-high-definition video resolution. We derived the optimal frequency of the THz carrier by varying the wavelength difference between DFB-LD output and Tunable LD output in the THz signal transmitter to obtain the best transmission performances of the uncompressed 4K video signals. Furthermore, we exploited the negative laser-to-filter detuning for the adiabatic chirp management of the DFB-LD by the intentional discrepancy between the center wavelength of the optical band-pass filter and the output wavelength of the DFB-LD. With the help of the abovementioned methods, we successfully transmitted uncompressed 4K video signals over the 2.3-m wireless transmission distance without black frames induced by time synchronization error.

Near-Optimal Low-Complexity Hybrid Precoding for THz Massive MIMO Systems

  • Yuke Sun;Aihua Zhang;Hao Yang;Di Tian;Haowen Xia
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.4
    • /
    • pp.1042-1058
    • /
    • 2024
  • Terahertz (THz) communication is becoming a key technology for future 6G wireless networks because of its ultra-wide band. However, the implementation of THz communication systems confronts formidable challenges, notably beam splitting effects and high computational complexity associated with them. Our primary objective is to design a hybrid precoder that minimizes the Euclidean distance from the fully digital precoder. The analog precoding part adopts the delay-phase alternating minimization (DP-AltMin) algorithm, which divides the analog precoder into phase shifters and time delayers. This effectively addresses the beam splitting effects within THz communication by incorporating time delays. The traditional digital precoding solution, however, needs matrix inversion in THz massive multiple-input multiple-output (MIMO) communication systems, resulting in significant computational complexity and complicating the design of the analog precoder. To address this issue, we exploit the characteristics of THz massive MIMO communication systems and construct the digital precoder as a product of scale factors and semi-unitary matrices. We utilize Schatten norm and Hölder's inequality to create semi-unitary matrices after initializing the scale factors depending on the power allocation. Finally, the analog precoder and digital precoder are alternately optimized to obtain the ultimate hybrid precoding scheme. Extensive numerical simulations have demonstrated that our proposed algorithm outperforms existing methods in mitigating the beam splitting issue, improving system performance, and exhibiting lower complexity. Furthermore, our approach exhibits a more favorable alignment with practical application requirements, underlying its practicality and efficiency.

Dual-band Frequency Selective Surface Bandpass Filters in Terahertz Band

  • Qi, Limei;Li, Chao
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.6
    • /
    • pp.673-678
    • /
    • 2015
  • Terahertz dual-band frequency selective surface filters made by perforating two different rectangular holes in molybdenum have been designed, fabricated and measured. Physical mechanisms of the dual-band resonant responses are clarified by three differently configured filters and the electric field distribution diagrams. The design process is straightforward and simple according to the physical concept and some formulas. Due to the weak coupling between the two neighboring rectangle holes with different sizes in the unit cell, good dual-band frequency selectivity performance can be easily achieved both in the lower and higher bands by tuning dimensions of the two rectangular holes. Three samples are fabricated, and their dual-band characteristics have been demonstrated by a THz time-domain spectroscopy system. Different from most commonly used metal-dielectric structure or metal-dielectric-metal sandwiched filters, the designed dual-band filters have advantages of easy fabrication and low cost, the encouraging results afforded by these filters could find their applications in dual-band sensors, THz communication systems and other emerging THz technologies.

Performance Analysis of a UAV Energy Harvesting Relay Network in the Terahertz Band (테라헤르츠 대역 무인비행체 에너지 수확 릴레이 네트워크 성능분석)

  • Yeongi Cho;Saifur Rahman Sabuj;Han-Shin Jo
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.411-417
    • /
    • 2023
  • Unmanned aerial vehicle (UAV)-assisted relay has the advantages of ease of deployment, good communication channels, and mobility over traditional terrestrial relay, which greatly improves wireless connectivity. In this paper, we design a UAV-enabled relay network that can utilize radio frequency bands to harvest energy from sources and utilize terahertz (THz) bands to transmit information between secondary transmitters and receivers. Next, we solve the optimal position of the UAV that maximizes the relay channel capacity, and propose an algorithm to design two trajectories of UAV (a straight and an elliptical trajectory) using the derived solution. Numerical results show that the straight trajectory is better in terms of harvested energy and channel capacity.