• Title/Summary/Keyword: terahertz

Search Result 254, Processing Time 0.066 seconds

Wavelet Power Spectrum Estimation for High-resolution Terahertz Time-domain Spectroscopy

  • Kim, Young-Chan;Jin, Kyung-Hwan;Ye, Jong-Chul;Ahn, Jae-Wook;Yee, Dae-Su
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.103-108
    • /
    • 2011
  • Recently reported asynchronous-optical-sampling terahertz (THz) time-domain spectroscopy enables high-resolution spectroscopy due to a long time-delay window. However, a long-lasting tail signal following the main pulse is often measured in a time-domain waveform, resulting in spectral fluctuation above a background noise level on a high-resolution THz amplitude spectrum. Here, we adopt the wavelet power spectrum estimation technique (WPSET) to effectively remove the spectral fluctuation without sacrificing spectral features. Effectiveness of the WPSET is verified by investigating a transmission spectrum of water vapor.

Theoretical Study of the Strong Field Emission of Electrons inside a Nanogap Due to an Enhanced Terahertz Field

  • Choi, Soo Bong;Byeon, Clare Chisu;Park, Doo Jae
    • Current Optics and Photonics
    • /
    • v.2 no.6
    • /
    • pp.508-513
    • /
    • 2018
  • We report the development of a theoretical model describing the strong field tunneling of electrons in an extremely small nanogap (having a width of a few nanometers) that is driven by terahertz-pulse irradiation, by modifying a conventional semiclassical model that is widely applied for near-infrared wavelengths. We demonstrate the effects of carrier-envelope phase difference and strength of the incident THz field on the tunneling current across the nanogap. Additionally, we show that the dc bias also contributes to the generation of tunneling current, but the nature of the contribution is completely different for different carrier-envelope phases.

Terahertz-based Security Screening System Technology (테라헤르츠파 기반 대인 보안검색 기술의 동향과 발전 전망)

  • Lee, I.M.;Lee, E.S.;Kim, M.G.;Choi, D.H.;Park, D.W.;Shin, J.H.;Kim, Y.H.;Kim, J.S.;Cho, J.C.;Kim, Y.H.;Jo, S.;Kwak, D.Y.;Park, K.H.
    • Electronics and Telecommunications Trends
    • /
    • v.37 no.2
    • /
    • pp.11-20
    • /
    • 2022
  • Terahertz electromagnetic waves are considered the waves for the next generation of security checking technology. They can penetrate opaque materials, such as plastics, fibers, papers, and leathers. In addition, they are harmless to humans they cannot penetrate human skins. Moreover, because their frequencies are higher than those of millimeter waves, higher resolution and more detailed information is expected than the millimeter wave-based technologies In this study, we describe the trends and prospectives of terahertz technology as security checking technology that can be directly applied to a human body.

Performance Comparison of Single-Carrier and Multi-Carrier Systems in a Terahertz Wireless Communication Environment

  • Asiedu, Derek Kwaku Pobi;Ahiadormey, Roger Kwao;Shin, Suho;Lee, Kyoung-Jae
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.9 no.1
    • /
    • pp.11-24
    • /
    • 2019
  • This paper investigates the performance comparison of a Terahertz (THz) communications for a single-carrier and a multi-carrier single antenna point-to-point communication system. The multi-carrier system and single carrier system consider the orthogonal frequency division multiplexing (OFDM) and the minimum mean square error linear equalizer (MMSE-LE), respectively. We compare the frame-error-rate (FER) and throughput performance of both the systems for a THz communication environment with the carrier frequency of 300GHz and the tapped delay line (TDL) channel models described in 3GPP. It is observed from the simulation results that the OFDM systems outperform the MMSE-LE for various configurations.

Software-based Simple Lock-in Amplifier and Built-in Sound Card for Compact and Cost-effective Terahertz Time-domain Spectroscopy System

  • Yu-Jin Nam;Jisoo Kyoung
    • Current Optics and Photonics
    • /
    • v.7 no.6
    • /
    • pp.683-691
    • /
    • 2023
  • A typical terahertz time-domain spectroscopy system requires large, expensive, and heavy hardware such as a lock-in amplifier and a function generator. In this study, we replaced the lock-in amplifier and the function generator with a single sound card built into a typical desktop computer to significantly reduce the system size, weight, and cost. The sound card serves two purposes: 1 kHz chopping signal generation and raw data acquisition. A unique software lock-in (Python coding program to eliminate noise from raw data) method was developed and successfully extracted THz time-domain signals with a signal-to-noise ratio of ~40,000 (the intensity ratio between the peak and average noise levels). The built-in sound card with the software lock-in method exhibited sufficiently good performance compared with the hardware-based method.

Characterization of the Stress-optic Properties of Ceramics by Terahertz Time-domain Spectroscopy

  • Zhi Qiang Wang;Wen Jia Ren;Gui Ying Zhang;Zhi Yong Wang
    • Current Optics and Photonics
    • /
    • v.8 no.3
    • /
    • pp.225-229
    • /
    • 2024
  • This paper introduces a rapid measurement technique for the stress-optic coefficient, using terahertz time-domain spectroscopy. First we propose a design combining a four-point bending device with a scanning stage to streamline the loading process. Then we detail the measurement principle and outline the signal-processing algorithm. The experiments are carried out on Al2O3, a representative ceramic material. The experimental data reveal that the refractive index of Al2O3 exhibits a linear decrease with increasing stress. This work supplies an efficient method for stress measurement rooted in the stress-optic effect.

A Study on Resonance Properties of a Terahertz Asymmetric Split-Loop Resonator Type Metamaterial for High Quality Factor (테라헤르츠 비대칭 분리고리공진기 메타물질의 높은 품질인자를 위한 공진 특성에 관한 연구)

  • Park, Dae-Jun;Ryu, Han-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.663-669
    • /
    • 2016
  • A terahertz asymmetric split-loop resonator (ASLR) was analyzed for use in high-sensitivity sensing applications. Its structural asymmetricity induces an asymmetric Fano resonance which has a high quality factor compared to the symmetric eigen-resonance. The variations of the resonant frequency, transmission coefficient, and quality factor of the ASLR in the eigen and Fano resonances are analyzed as a function of its structural asymmetricity. Also, the surface current densities on the ASLR in both resonances are calculated to analyze the main cause of the variations of its transmission characteristics. The surface current of the ASLR in the eigen resonance shows a dipole resonance, which increases the radiation loss and reduces the quality factor. On the other hand, the surface current of the ASLR in the Fano resonance shows a trapped or quadrupole mode which has a low radiation loss. Therefore, the ASLR operated in the Fano resonance has a high quality factor. Terahertz, high-performance filters and high sensitivity sensors can be developed based on our analysis results of the ASLR having a high quality factor. These high-performance devices based on terahertz metamaterials could increase the adoption of terahertz industrial applications.