• 제목/요약/키워드: tension-compression fatigue

검색결과 47건 처리시간 0.02초

The Study about the Fatigue Strength Improvement Mechanism by the Processing of Fillet Welded Joint (필렛용접이음부의 후처리에 따른 피로강도 향상 메커니즘의 연구)

  • Lim, Cheong Kweon;Park, Moon Ho;Chang, Chun Ho
    • Journal of Korean Society of Steel Construction
    • /
    • 제11권3호통권40호
    • /
    • pp.319-327
    • /
    • 1999
  • This study makes mechanism of the fatigue strength improvement by the processing of weld toe clear for the vertical cross rib specimens which was made fillet weld joint, also it proposes to the appropriate later processing. As a result of tension fatigue test, the fatigue strength improvement could have been seen in later processed specimens than as-weld specimens. Especially fatigue crack initial life $N_c$ increased in specimens which processed grinder after hammer-peening. Also, fatigue crack propagation life $N_p$ improved more in hammer-peening specimens than as-weld or TIG specimens. It thinks that $N_c$ is because of the geometrical shape of weld toe, i.e. the relaxation of the stress concentration and also that $N_p$ is because the big compression residual stress which was introduced in the surface by hammer-peening is restraining the propagation of fatigue crack.

  • PDF

Failure Analysis and Countermeasures of SCM435 High-Tension Bolt of Three-Step Injection Mold

  • Yun, Seo-Hyun;Nam, Ki-Woo
    • Journal of the Korean Society of Industry Convergence
    • /
    • 제23권4_1호
    • /
    • pp.531-539
    • /
    • 2020
  • When injection mold is repeatedly used for mass production, fatigue phenomenon due to cyclic stress may occur. The surface and interior of structure might be damaged due to cyclic stress or strain. The objective of this study was to analyze failure of SCM435 high-tension bolts connecting upper and lower parts of a three-stage injection molding machine. These bolts have to undergo an accurate heat treatment to prevent the formation of chromium carbide and the action of dynamic stresses. Bolts were fractured by cyclic bending stress in the observation of ratchet marks and beach marks. Damaged specimen showed an acicular microstructure. Impurity was observed. Chromium carbide was observed near the crack origin. Both shape parameters of the Vickers hardness were similar. However, the scale parameter of the damaged specimen was about 20% smaller than that of the as-received specimen. Much degradation occurred in the damaged specimen. Bolts should undergo an accurate heat treatment to prevent the formation of chromium carbide. They must prevent the action of dynamic stresses. Bolts need accurate tightening and accuracy of heat treatment and screws need compression residual stress due to peening.

A study on the corrosion fatigue fracture behavior of ion-nitrided SM45C under alternating tension-compression loading (반복인장-압축하중을 받는 이온질화 처리한 SM45C의 부식피로 파괴거동에 관한 연구)

  • 우창기;김희송
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • 제13권3호
    • /
    • pp.451-460
    • /
    • 1989
  • This paper dealt with the effect of the ratios N2 to H2 gas on the corrosion fatigue failure behavior of ion-nitrided SM45C steel specimens. The specimens were water cooled after ion-nitriding at 500.deg. C for 3hrs in 5 Torr, 0.8N$_{2}$ and 0.5N$_{2}$ atmospheres. As the nitrogen concentration increases, the higher compressive residual stresses developed in the surface layer and the depth of nitrided layer increased, which in turn gave rise to increases in fatigue strength and corrosion fatigue life. In the region less than 1.5 * 10$^{5}$ cycles, fatigue failure initiated at the brittle nitrided case, whereas in the region higher than 1.5 * 10$^{5}$ cycles crack initiated from the non-metallic inclusions in the subsurface. The initiation of corrosion fatigue failure was mainly attributed to pitting of case hardened surface layer.

Low Cycle Fatigue Behavior of Longitudinal Reinforcement (축방향철근의 저주파 피로 거동)

  • Lee, Jae-Hoon;Ko, Seong-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • 제22권2호
    • /
    • pp.263-271
    • /
    • 2010
  • The purposes of this study is to verify the fracture characteristic of steel which is manufactured in Korea, subjected to cyclic loading. This investigation deals with the low cycle fatigue behavior of longitudinal reinforcement in reinforced concrete bridge substructure (piles and columns of piers). Eighty-one specimens of longitudinal reinforcement were tested under axial strain controlled reversed cyclic tests with strain amplitudes. The selected test variables are ratio of tension strain to compression strain, yield stress of longitudinal reinforcement, ratio of diameter of longitudinal steel to clear length of longitudinal steel, size of longitudinal steel and strain amplitudes. Low cycle fatigue behavior and low-cycle fatigue life are investigated and discussed in this paper.

Finite Element Analysis and Fatigue Life Evaluation of Automotive Rubber Insulator (자동차 방진 고무 부품의 유한요소해석 및 피로수명평가)

  • Kim, W.D.;Woo, C.S.;Han, S.W.
    • Elastomers and Composites
    • /
    • 제33권3호
    • /
    • pp.168-176
    • /
    • 1998
  • A strut rubber insulator is used in a suspension component of passenger cars. The uni-axial tension, compression, and the shear test were performed to acquire the constants of the strain energy functions which were Mooney-Rivlin model and Ogden model. The finite element analysis was executed to evaluate the behavior of deformation and stress distribution by using the commercial finite element code MARC ver K6.2. Also, the fatigue tests were carried out to obtain the fatigue life-load curve. The fatigue failure was initiated at the folded position of rubber, which was the same result predicted by the finite element analysis.

  • PDF

A Study on the Fatigue Failure Behavior SM45C on Ion-Nitrided under Alternating Tension-Compression Axial Loading (반복 인장-압축하중을 받는 이온질화처리한 SM 45C의 피로파괴거동에 관한 연구)

  • Man, Chang-Gi;Kim, Hui-Song
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제5권3호
    • /
    • pp.71-80
    • /
    • 1988
  • This paper dealt with experimentally the effect of $N_2$ and $H_2$ gas mixtures ratio in the fatigue characteristics of SM45C on Ion-nitrided. The specimen were treated water cooling after Ion-nitriding at $500^{\circ}C$ and 5 torr. in 80% $N_2$and 50% $N_2$gas mixtures ratio in the atmosphere for 3 hrs. The hardness distribution and the depth of nitriding layer shows more increase in 80% $N_2$gas mixture ratio than 50% $N_2$. Ion-nitrided specim- en for 80% $N_2$gas mixture ratio show more increase infatigue strenght in the $>1.5{\times}10^5$ cycles region than 50% $N_2$. In the $<1.5{\times}10^5$cycles region, fatigue failure is due to cracking of the brittle nitrided case, and the propergation of the surface cracks into the core. But in the $>1.5{\times}10^5$cycles region, it is found that cracks propagate from the non-metallic inclusions in the subsurface.

  • PDF

A Study on the Welding Residual Stress Analysis of the Spot Welding Point (전기저항 점용접부의 용접잔류응력 해석에 관한 연구)

  • 손일선;배동호
    • Proceedings of the KWS Conference
    • /
    • 대한용접접합학회 1999년도 특별강연 및 춘계학술발표대회 개요집
    • /
    • pp.233-236
    • /
    • 1999
  • The welding residual stress should be considered in fatigue stress analysis because it develope during the process of the electric resistance spot welding and it causes bad affect on the fatigue crack initiation and growth at nugget edge of spot welded points. Therefore the accurate estimation of residual stress is crucial. In this study, nonlinear finite element analysis on welding residual stress generated during the process of the spot welding was conducted, and their results were compared with the experimental data measured by X-ray diffraction method. From the results, it was found that welding residual stress existed as tension in the nugget center and as compression around the nugget edge.

  • PDF

Fatigue Characteristics of Engine Rubber Mount for Automotive (자동차용 엔진 마운트의 피로거동에 관한 연구)

  • Suh, Chang-Min;Oh, Sang-Yeob;Park, Dae-Kyu;Jang, Ju-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • 제23권5호
    • /
    • pp.45-53
    • /
    • 2009
  • In this study, Finite Element Analysis (FEA) was used to decide three kinds of material property of vibration proof rubber with the unique characteristic of non-linear and large deformation. As well, three types of hardness (Hs 50, 55, 60) were compared with the result of fatigue tests, fatigue life was able to be predicted. The request for fatigue life becomes strict more and more as increasing stress under conditions like a compaction, high load and high temperature for parts because it is main characteristics of rubber mount for automotive. Regarding to the fatigue life under dynamic deformation condition, it can be predicted as checking forced deformation extends and its frequency and its strain-life curve. As for material property tests of uniaxial tension test, uniaxial compression test, pure shear test, Ogden model was used for FEA by observing relations between stress and strain's rate as curve fitting. As a result of FEA, fatigue life for rubber mount was predicted and accorded well with the experimental data of fatigue test with hourglass specimens. In addition, its property of the predictable fatigue life method suggested in this study was accorded well with the experimental data by comparing the predicted fatigue life of FEA with the result of fatigue test for rubber component of engine rubber mount.

Computer aided failure prediction of reinforced concrete beam

  • Islam, A.B.M. Saiful
    • Computers and Concrete
    • /
    • 제25권1호
    • /
    • pp.67-73
    • /
    • 2020
  • Traditionally used analytical approach to predict the fatigue failure of reinforced concrete (RC) structure is generally conservative and has certain limitations. The nonlinear finite element method (FEM) offers less expensive solution for fatigue analysis with sufficient accuracy. However, the conventional implicit dynamic analysis is very expensive for high level computation. Whereas, an explicit dynamic analysis approach offers a computationally operative modelling to predict true responses of a structural element under periodic loading and might be perfectly matched to accomplish long life fatigue computations. Hence, this study simulates the fatigue behaviour of RC beams with finite element (FE) assemblage presenting a simplified explicit dynamic numerical solution to show computer aided fatigue behaviour of RC beam. A commercial FEM package, ABAQUS has been chosen for this complex modelling. The concrete has been modelled as a 8-node solid element providing competent compression hardening and tension stiffening. The steel reinforcements are simulated as two-node truss elements comprising elasto-plastic stress-strain behaviour. All the possible nonlinearities are duly incorporated. Time domain analysis has been adopted through an automatic Newmark-β time incremental technique. The program consists of twelve RC beams to visualize the real behaviour during fatigue process and to obtain the reliability of the study. Both the numerical and experimental results indicate a redistribution of stresses along the time and damage accumulation of beam which severely affect the serviceability and ultimate capacity of RC beam. The output of the FEM analysis demonstrates good match with the experimental consequences which affirm the efficacy of the computer aided model. The controlled fatigue damage evolution at service fatigue load limits makes the FE model an efficient tool in predicting high cycle fatigue behaviour of RC structures.

Microstructure and High-Cycle Fatigue Properties of High-Speed-Extruded Mg-5Bi-3Al Alloy (Mg-5Bi-3Al 마그네슘 고속 압출재의 미세조직과 고주기피로 특성)

  • Cha, J.W.;Jin, S.C.;Park, S.H.
    • Transactions of Materials Processing
    • /
    • 제31권5호
    • /
    • pp.253-260
    • /
    • 2022
  • In this study, the microstructural characteristics of a high-speed-extruded Mg-5Bi-3Al (BA53) alloy and its tensile, compressive, and high-cycle fatigue properties are investigated. The BA53 alloy is successfully extruded at a die-exit speed of 16.6 m/min without any hot cracking using a large-scale extruder for mass production. The homogenized BA53 billet has a large grain size of ~900 ㎛ and it contains fine and coarse Mg3Bi2 particles. The extruded BA53 alloy has a fully recrystallized microstructure with an average grain size of 33.8 ㎛ owing to the occurrence of complete dynamic recrystallization during high-speed extrusion. In addition, the extruded BA53 alloy contains numerous fine lath-type Mg3Bi2 particles, which are formed through static precipitation during air cooling after exiting the extrusion die. The extruded BA53 alloy has a high tensile yield strength of 175.1 MPa and ultimate tensile strength of 244.4 MPa, which are mainly attributed to the relative fine grain size and numerous fine particles. The compressive yield strength (93.4 MPa) of the extruded BA53 alloy is lower than its tensile yield strength, resulting in a tension-compression yield asymmetry of 0.53. High-cycle fatigue test results reveal that the extruded BA53 alloy has a fatigue strength of 110 MPa and fatigue cracks initiate at the surface of fatigue test specimens, indicating that the Mg3Bi2 particles do not act as fatigue crack initiation sites. Furthermore, the extruded BA53 alloy exhibits a higher fatigue ratio of 0.45 than other commercial extruded Mg-Al-Zn-based alloys.