• Title/Summary/Keyword: tension stress

Search Result 1,294, Processing Time 0.026 seconds

Analysis of Surface Crack under Tension and Bending Stress in Plate (인장과 굽힘응력을 받는 판재의 표면균열해석)

  • 오환섭;박철희;허민구
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.4
    • /
    • pp.121-128
    • /
    • 1998
  • In this study, when tension and bending stress act on plate simultaneously, stress intensity factor is analyzed at crack tip with using BEM(Boundary Element Method). In this analysis, stress intensity factors(S.I.F) are defined for variable ligament, aspect and stress ratio($\sigma$T/$\sigma$B). Consequently, predicted that crack grow to depth direction at low aspect and ligament ratio in tension stress and to surface direction in bending stress. Tension and bending stress act on plate same time, effect of tension stress in the first stage and effect of bending stress in the after stage was to observed. The outbreak of secondary crack in backside is under the control of stress amplitude and predict that the point of outbreak is mear backside.

  • PDF

Experimental Verification of Set-Up Reference Values for the Determination of Downcoiling Tension in Hot Strip Mill (열간압연시 권취장력 설정기준치의 실험적 검증)

  • 공성락;강용기;김영환;문영훈
    • Transactions of Materials Processing
    • /
    • v.10 no.1
    • /
    • pp.53-58
    • /
    • 2001
  • Set-up reference values, used in determining the optimum downcoiling tension, we experimentally verified in this study. During the actual downcoiling, the strip suffers both tension and bending force through the rotation of mandrel. Therefore, simulative test which can measure both tension and bending resistance of strip was performed to estimate set-up reference value for strip tension during downcoiling operations. The values obtained from the simulative test were correlated with the yield stress which has conventionally been used as reference values for downcoiling tension. The correlative analysis showed that the yield stress of strip can be a good reference value for downcoiling tension. Furthermore, the bending load also shows strong correlation with simulated values due to the close relationship between yield stress and bending load.

  • PDF

Taper Tension Logic for Optimization of Residual Stresses in Roll-to-Roll Winding Systems (롤투롤 시스템에서 감김롤 내부 잔류응력 최소화를 위한 테이퍼 장력 설정 기법)

  • Lee, Jongsu;Lee, Changwoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.12
    • /
    • pp.1011-1016
    • /
    • 2015
  • In a roll-to-roll continuous system, winding is one of the most important processes since it determines the quality of the final manufactured products such as flexible film and printed electronic devices. Since an adequate winding tension can reduce the incidence of the defects that are derived from the inner stress of the wound roll such as starring and telescoping, it is necessary to determine the optimal taper-tension profile. In this study, an algorithm for the setting of an optimal taper-tension profile in consideration of the residual stress in the wound roll is suggested; furthermore, the algorithm was adjusted for the determination of an optimal taper-tension profile regarding the winding process of $10{\mu}m$ polypropylene (PP) film. As a result of the algorithm-generated, optimal taper-tension profile, the residual stress and radial stress in a PP wound roll were decreased to 27.37 % and 40.05 % (mean value), respectively.

Field application of elasto-magnetic stress sensors for monitoring of cable tension force in cable-stayed bridges

  • Yim, Jinsuk;Wang, Ming L.;Shin, Sung Woo;Yun, Chung-Bang;Jung, Hyung-Jo;Kim, Jeong-Tae;Eem, Seung-Hyun
    • Smart Structures and Systems
    • /
    • v.12 no.3_4
    • /
    • pp.465-482
    • /
    • 2013
  • Recently, a novel stress sensor, which utilizes the elasto-magnetic (EM) effect of ferromagnetic materials, has been developed to measure stress in steel cables and wires. In this study, the effectiveness of this EM based stress sensors for monitoring of the cable tension force of a real scale cable-stayed bridge was investigated. Two EM stress sensors were installed on two selected multi-strand cables in Hwa-Myung Bridge, Busan, South Korea. Conventional lift-off test was conducted to obtain reference cable tension forces of two test cables. The reference forces were used to calibrate and validate cable tension force measurements from the EM sensors. Tension force variations of two test cables during the second tensioning work on Hwa-Myung Bridge were monitored using the EM sensors. Numerical simulations were conducted to compare and verify the monitoring results. Based on the results, the effectiveness of EM sensors for accurate field monitoring of the cable tension force of cable-stayed bridge is discussed.

A Study on the Equi-biaxial Tension Test of Rubber Material (고무재료의 이축 인장시험에 관한 연구)

  • Kim, Dong-Jin;Kim, Wan-Doo;Kim, Wan-Soo;Lee, Young-Shin
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.425-430
    • /
    • 2003
  • The material properties of rubber was determined by the experiments of uniaxial tension, uniaxial compression, planer tension, equi-biaxial tension and volumetric compression. In compression test, it is difficult to obtain the pure state of compression stress and strain due to friction force between the specimen and compression platen. In this study, the stress and strain data from the equi-biaxial tension test were converted to compression stress and strain and compared to a perfect state of simple compression data when friction was zero. The compression test device with the tapered platen was proposed to overcome the effect of friction. It was turned out that the relationship of the stress and strain using the tapered platen was in close agreement with the pure compressive state.

  • PDF

Effect of Taper Tension Profiles on Radial Stress of a Wound Roll in Roll-to-roll Winding Process (롤투롤 와인딩 시스템에서 테이퍼 장력과 감김롤 응력분포에 관한 연구)

  • Lee, Changwoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.2
    • /
    • pp.125-131
    • /
    • 2014
  • Winding is an integral operation in almost every roll-to-roll continuous process and center-winding is suitable and general scheme in the winding system. However, the internal stresses within center-wound rolls can cause damage such as buckling, spoking, cinching, etc. It is therefore necessary to analyze the relationship between taper tension in winding section and internal stress distribution within center-wound roll to prevent the winding failure. In this study, an optimal taper tension control method with parabolic taper tension profile for producing high quality wound roll was developed. The new logic was designed from analyzing the winding mechanism by using the stress model in center-wound rolls. The performance of the proposed taper tension profile was verified experimentally.

A Study on the Equi-biaxial Tension Test of Rubber Material (고무재료의 등 이축 인장시험에 관한 연구)

  • 김완두;김동진;김완수;이영신
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.95-104
    • /
    • 2003
  • The material properties of rubber was determined by the experiments of uniaxial tension, uniaxial compression, planer tension, equi-biaxial tension and volumetric compression. In compression test, it is difficult to obtain the pure state of compression stress and strain due to friction force between the specimen and compression platen. In this study, the stress and strain data from the equi-biaxial tension test were converted to compression stress and strain and compared to a pure state of simple compression data when friction was zero. The compression test device with the tapered platen was proposed to overcome the effect of friction. It was fumed out that the relationship of the stress and strain using the tapered platen was in close agreement with the pure compressive state.

Analysis of Elastic-Plastic Stress Fields near the Crack Tip under Tension-Compression Loading (인장-압축 하중 하의 균열선단의 탄.소성 응력해석)

  • 석창성;김수용;김동중;안하늘;박은수;원종일
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.4
    • /
    • pp.43-52
    • /
    • 1999
  • In this study, theoretical stress field analysis near the crack tip under tension-compression loading was performed. The results of the theoretical stress analysis were compared to the results of Finite Element Method(FEM). From this study, generation of tensile residual stress at crack tip was proved after 1-cycle of tension-compression loading, and the fracture toughness and the fracture load of a structure can be decreased by the residual stress.

  • PDF

The Effect of Compressive Stress on Fracture Response of Alumina under Uniaxial Stress Cycling (반복 일축응력하의 알루미나 파괴거동에 미치는 압축응력의 영향)

  • Kim, K.T.;Shu, J.;Baik, S.K.
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.9
    • /
    • pp.712-720
    • /
    • 1991
  • The effect of cyclic compressive stress on fracture responses of Al2O3 was investigated under uniaxial stress cycling. Experimental data were obtained for Al2O3 tension specimens under uniaxial tension-unloading and tension-compression cyclic loading conditions. To investigate the effect of compressive stress on the crack growth, theoretical results from the crack growth rate were compared with measured stress vs. failure relations. At low stress level in tension-compression cycling, residual tensile strains were also observed about failure time.

  • PDF

Shape Finding and Stress Analyses of Tension Membrane Structures by using 4-node Isoparametric Elements (4월점 등매개요소를 이용한 인장막구조(引張膜構造)의 형상해석(形狀解析) 및 응력해석(應力解析))

  • Lee, Kyung-Soo;Lee, Hyung-Hoon;Moon, Jeong-Ho;Han, Sang-Eul
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.05a
    • /
    • pp.222-229
    • /
    • 2004
  • This study purports to analyze equally stressed surfaces in tension-membrane structures through a geometrically nonlinear approach. It adopts the formulation of a 4-node quadrilateral isoparametric plane stress element considering the orthotropic characteristic of membrane textures. Tension structures, which include cables and tension membranes, such as a cable dome initially exhibit unstable conditions because no initial internal stiffness such as bending stiffness is present. Such a structural system requires prestressing to the tension members to attain a stable state. A tension-membrane structure retains a stable three dimensional curved surface as a structural shape. This analytical process for finding the geometry is referred to as Shape Finding Analysis. In order to assess the validity of this study, we examine equally stressed surfaces of saddle and catenary shape shell structures and carry out pertinent stress analyses

  • PDF