• Title/Summary/Keyword: tension strength

Search Result 1,228, Processing Time 0.023 seconds

EFFECT OF THERMAL CYCLING AND AGING ON THE TENSILE STRENGTH OF GLASS-IONOMER RESTORATIVE MATERIALS (Thermal cycling과 시효처리가 Glass-Ionomer 수복재의 인장강도에 미치는 영향)

  • Baik, Byeong-Ju;Kim, Mun-Hyeon;Lee, Seung-Young;Lee, Seung-Ik;Kim, Jae-Gon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.26 no.4
    • /
    • pp.677-687
    • /
    • 1999
  • This study was performed to evaluate the effect of aging and thermal cycling on the tensile strength of six commercially available glass-ionomer materials: two chemically set glass-ionomer materials(Fuji II, Fuji IX), two resin-modified glass-ionomer materials(Fuji II LC, Vitremer), and two polyacid-modified composite resins(Compoglass, Dyract). Rectangular tension test specimens were fabricated in a teflon mold giving 5mm in gauge length and 2mm in thickness. All samples were divided into 3 groups. Group 1 was immersed in a $37^{\circ}C$ distilled water for 1 hour. Group 2 was immersed in a $37^{\circ}C$ distilled water for 30 days. Group 3 was subjected to 10,000 thermal cycles between $5^{\circ}C$ and $55^{\circ}C$, and the immersion time in each bath was 15 seconds per cycle. Tensile testing was carried out at a cross-head speed of 0.5mm/min and fracture surfaces were examined with scanning electron microscope. The results obtained were summarized as follows; 1. The polyacid-modified composite resins were stronger than the resin-modified glass-ionomer materials, which were much stronger than the conventional glass-ionomer materials. 2. Tensile strengths were slightly increased after aging treatments for 30days. 3. Tensile strengths of conventional glass ionomers were significantly increased after thermal cycling treatment(p<0.01). 4. The highest tensile strength value of 45.4MPa was observed in the Dyract group and the lowest value of 13.3MPa was observed in the Fuji II LC group after the thermal cycling test, and the strengths of polyacid-modified composite groups were significantly higher than those of other groups. 5. The highest characteristic strength value of 48.6MPa was obtained in the Dyract group, however the highest Weibull modulus value of 8.9MPa was obtained in the Compoglass group after thermal cycling test.

  • PDF

Early Changes after Death of Plaice, Paralichthys olivaceus Muscle -4. Effect of Killing Methods on Rigor Index and Breaking Strength of Muscle- (넙치(Paralichthys olivaceus)육의 사후 조기 변화 -4. 치사 방법이 육의 사후 경직도와 파괴 강도에 미치는 영향-)

  • CHO Young-Je;LEE Nam-Geoul;KIM Yuck-Yong;KIM Jae-Hyun;CHOI Young-Joon;KIM Geon-Bae;LEE Keun-Woo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.1
    • /
    • pp.41-46
    • /
    • 1994
  • This study was undertaken to clarify the effect of killing methods on physical and rheological changes of plaice, Paralichthys olivaceus muscle at early period after death. Plaices killed by the four different methods(1. spiking at the brain instantly. 2. drowning in air. 3. dipping in 1,000ppm ethylaminobenzoate dissolved sea water as an anesthetic. 4. electrifying in sea water.) were stored at $5^{\circ}C$, and the rigor-index and breaking strength through storage were monitored. The longest onset time of rigor-mortis and full rigor was in the samples killed by dipping in sea water with dissolved anesthetic among all samples, where rigor-mortis began at 20hrs after killing and maximum tension was attained after 56hrs. However, in the cases of plaice electrified in sea water or drowned in air, the onset of rigor-mortis began just after killing and maximum tensions were attained after 9hrs and 13hrs, respectively. The level of breaking strength in the muscle of fish killed by spiking the brain instantly was $950.30{\pm}50.23g$, immediately after killing. The value and time reached around the maximum breaking strength for each of the samples were $1,230.60{\pm}30.32g$ and Ohr (immediately after killing) for samples killed by electrifying in sea water, $1,235.83{\pm}35.37g$ and 2.5hrs for drowning samples, $1,186.29{\pm}55.90g$ and 10hrs for spiking samples, and $1,189.67{\pm}50.32g$ and 15hrs for samples dipped in anesthetic, respectively. From the results above, it could be concluded that electrification in sea water is the most effective method in accelerating rigor-mortis and shortening times of reaching the maximum breaking strength of fresh plaice flesh of all the killing methods at early periods after death, whereas dipping in sea water treated with anesthetic was the most effective way in delaying those changes.

  • PDF

An Experimental Study on the Seismic Performance of Shear Connections and Rib Plate H Beam to Column Connections (전단접합 및 리브 플레이트로 보강한 H형 보-기둥 접합부의 내진성능에 관한 실험적 연구)

  • Oh, Kyung Hyun;Seo, Seong Yeon;Kim, Sung Yong;Yang, Young Sung;Kim, Kyu Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.5 s.78
    • /
    • pp.569-580
    • /
    • 2005
  • The postbeam joint connection of the existing steel structure moment flexible frame system did not produce sufficient seismic resistance during the earthquakes in Northridge and Kobe, and it sustained brittle fracturing on the joint connection. This study was performed to execute the high-tensile bolt share connection of H-beams web and the full-scale experiment as a parameter of the existing reinforcement of H-flange rib, by making the shape of the existing joint connection. This experiment was performed to determine the extent of the decrease of the number of high-tensile bolts and how to improve workability of the two-phase shear connection of web beam. In addition, this study was performed to enhance the seismic resistant capacity through the enforcement of rib plates. As a result of the experiment of two-phase shear connection of H-beam web and of joint connection to be reinforced by rib plates, the results of this study showed that the initial stiffness, energy-dissipation capacity, and rotational capacity of plasticity was higher than the existing joint connection. As to the rate of increasing the strength and deformation capacity, there were differences between the tension side and compression side because of the position of shear tap. However, as a whole, they have shown excellent seismic resistant capacity. Also, all the test subjects exceeded 4% (rate of delamination), about 0.029 rad (total plastic capacity), and about 130% (maximum strength of joint connection) of fully plastic moment for the original section. Accordingly, this study was considered as it would be available in the design more than the intermediate-level of moment flexible frame.

Refined 3-Dimensional Strut-Tie Models for Analysis and Design of Reinforced Concrete Pile Caps (철근콘크리트 파일캡의 해석 및 설계를 위한 개선 3차원 스트럿-타이 모델)

  • Kim, Byung Hun;Chae, Hyun Soo;Yun, Young Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.115-130
    • /
    • 2013
  • The sectional methods of current design codes have been broadly used for the design of various kinds of reinforced concrete pile caps. Lately, the strut-tie model approach of current design codes also became one of the attracting methods for pile caps. However, since the sectional methods and the strut-tie model approach of current design codes have been established by considering the behaviors of structural concrete without D-regions and two-dimensional concrete structures with D-regions, respectively, it is inappropriate to apply the methods to the pile caps dominated by 3-dimensional structural behavior with disturbed stress regions. In this study, the refined 3-dimensional strut-tie models, which consider the strength characteristics of 3-dimensional concrete struts and nodal zones and the load-carrying capacity of concrete ties in tension regions, are proposed for the rational analysis and design of pile caps. To examine the validity of the proposed models and to verify the necessity of appropriate constituent elements for describing 3-dimensional structural behavior and load-transfer mechanism of pile caps, the ultimate strength of 78 reinforced concrete pile caps tested to failure was examined by the proposed models along with the sectional and strut-tie model methods of current design codes.

Development of Pilot-Scale Manufacturing Process of SiC Fiber from Polycarbosilane Precursor with Excellent Mechanical Property at Highly Oxidation Condition and High Temperature (폴리카보실란 전구체로부터 고온 산화성분위기서 기계적물성이 우수한 파이롯-규모의 탄화규소섬유 제조공정 개발)

  • Yoon, B.I.;Choi, W.C.;Kim, J.I.;Kim, J.S.;Kang, H.G.;Kim, M.J.
    • Composites Research
    • /
    • v.30 no.2
    • /
    • pp.116-125
    • /
    • 2017
  • The purpose of this study is to develop silicon carbide fiber showing an excellent mechanical properties under highly oxidative conditions at high temperature. Polycarbosilane(PCS) as a preceramic precursor was used for making the SiC fiber. PCS fiber was taken by melt spinning method followed by melting the PCS at $300{\sim}350^{\circ}C$ in N2 gas. The Curing of PCS fiber was carried out in air oxygen chamber, prior to high temperature pyrolysis. Degree of cure was calculated by characteristic peak's ratio of Si-H to $Si-CH_3$ in FT-IR spectra before and after curing of PCS fiber. The properties of SiC fiber was affected greatly by the degree of cure. The SiC fiber produced by controlling fiber tension during heat treatment showed good properties. The SiC fiber exposed to $1000^{\circ}C$ at air from 1 min. up to maximum 50 hrs showed around 60% reduction in tensile strength. We found that large amount of carbon content on the fiber surface after long-term exposure has resulted in lower tensile strength.

An Experimental Study on Water Resistance of Penetrating Water Repellency of Emulsified Silicon Type Exposed In The Outdoor Environment (옥외폭로에 따른 실리콘계 유화형 흡수방지재의 내수성에 관한 실험적 연구)

  • Shim Hyun-Bo;Lee Min-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.4 s.82
    • /
    • pp.477-484
    • /
    • 2004
  • As a part of durability improvement of concrete-structure, penetrating water repellency of liquid type is applied to concrete surface. Besides, a related standard is made recently, but the standard has been prescribe for initial settlement state of penetrating water repellency of liquid type, to the exclusion of performance variation depending time and outdoor environment factor. For measurement of performance variation, we measured the weight of outdoor exposure specimen every regular intervals and check a measured value against a measured value of different condition specimen. Moreover, after the application of penetrating water repellent, measured a adhesive strength in tension between cement-polymer modified waterproof coatings and surface of specimen. The applied penetrating water repellent is a emulsified silicon type with a deep penetration depth. In view of the results so far achieved, the more a Quantity of application and active solid content does get, the deeper penetrating water repellency of emulsion type Penetrate get longer and supplied moisture increase in quantity, a penetrating water repellency of liquid type penetrates more deep, but a quantity of water absorption increase gradually. Perhaps this result is caused by a reduction of active solid content on concrete surface, because active ingredient is moved into the concrete by dissolution.

An Experimental Study on the Fatigue Fracture Behavior of Ion-Nitrided SM45C (이온질화 처리한 SM45C의 피로파괴거동에 관한 실험적 연구)

  • Sang-Chul,Kim;Chang-Gi,Woo;Dong-Myeong,Kang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.2
    • /
    • pp.47-54
    • /
    • 1990
  • In this study, the effects of gas ratio($N_2:H_2$) and treatment time on the fatigue fracture behavior, fatigue crack growth behavior and corrosion fatigue fracture behavior for the ion-nitrided SM45C steel were investigated. The results show that the fatigue limit and corrosion fatigue strength increased in porportion to $N_2$ gas and treatment time for all kinds of specimen, used in the experiment. Compare to the non-nitrided specimen, the fatigue limit and the corrosion fatigue strength increased about $24{\sim}29%$ at $10^7$ cycles in air and $32{\sim}48%$ at $10^6$ cycles in 3% NaCl aqueous solution, respectively. Similar results were derived with SM45C steel under Compression-Tension $24{\sim}29%$ at $10^6$ cycles in air and $32{\sim}48%$ either in 3% NaCl aqueous solution or in tap water, respectively. Ion-nitrided SM45C steel showed a slow fatigue crack growth rate at relatively low range of ${\Delta}K$ compared to the non-nitrided specimen. To the contrary, its rate increase at higher range of ${\Delta}K$.

  • PDF

Ground Test & Evaluation of Conformal Load-bearing Antenna Structure for Communication and Navigation (통신 항법용 다중대역 안테나 내장 스킨구조의 지상시험평가)

  • Kim, Min-Sung;Park, Chan-Yik;Cho, Chang-Min;Jun, Seung-Moon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.11
    • /
    • pp.891-899
    • /
    • 2013
  • This paper suggests a test and evaluation procedure of conformal load-bearing antenna structure(CLAS) for high speed military jet application. A log periodic patch type antenna was designed for multi-band communication and navigation antenna. Carbon/Glass fiber reinforced polymer was used as a structure supporting aerodynamic loads and honeycomb layer was used to improve antenna performance. Multi-layers were stacked and cured in a hot temperature oven. Gain, VSWR and polarization pattern of CLAS were measured using anechoic chamber within 0.15~2.0 GHz frequency range. Tension, shear, fatigue and impact load test were performed to evaluate structural strength of CLAS. Antenna performance test after every structural strength test was conducted to check the effect of structural test to antenna performance. After the application of new test and evaluation procedure to validate a new CLAS, a design improvement was found.

A Study on the Physical Properties and Permeability of Permaeable Poly Concrete (투수성 폴리머 콘크리트의 물성과 투수성능에 관한 연구)

  • 박응모;조영국;소양섭
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.213-222
    • /
    • 1998
  • Covering polmer mortar as a filter for permeable polymer concrete on the base polymer concrete is nessary for good permeability from infiltration continuously. Therefore, three covering polymer mortars on the optimum base polymer concrete were cast immediatly following on the casting of the base polymer concrete. They are tested for compressive and flexural strengths, adhesion in tension, hardening shrinkage and permeability, and the effects of the mix proportioning factors on the properties of the permeable polymer concrete are discussed. From the test results, increase in the compressive strength and decrease in the coeffiecient of permeability of base polymer concrete are clearly obserbed with increasing filler-binder ratio. The base polymer concretes having a compressive strength of 9.4~28.3MPa and a coefficient of permeability of 0.12~1.93 cm/s can be produced in the consideration of the mix proportioning factors. Binder and filler contents in mix proportions had a great influence on the permeability of polymer concretes. The mechanical properties of permeable polymer concretes covered with polymer mortar using crushed stone are superior to other filters, and hardening shrinkage is the smallest in filters. It is apparent that adhesion between the base polymer concrete and polymer mortar is affected by the degree of hardening shrinkage. From this study, proper mix proportions can be recommended in the consideration of properties of the permeable polymer concrete.

Mechanical Properties of an ECC(Engineered Cementitious Composite) Designed Based on Micromechanical Principle (마이크로역학에 의하여 설계된 ECC (Engineered Cementitious Composite)의 역학적 특성)

  • Kim Yun-Yong;Kim Jeong-Su;Kim Hee-Sin;Ha Gee-Joo;Kim Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.709-716
    • /
    • 2005
  • The objective of this study is to develop a high ductile fiber reinforced mortar, ECC(Engineered Cementitious Composite) with using raw material commercially available in Korea. A single fiber pullout test and a wedge splitting test were employed to measure the bond properties in a matrix and the fracture toughness of mortar matrix respectively, which are used for designing mix proportion suitable for achieving strain-hardening behavior at a composite level. Test results showed that the properties tended to increase with decreasing water-cement ratio. A high ductile fiber reinforced mortar has been developed by employing micromechanics-based design procedure. Micromechanical analysis was initially peformed to properly select water-cement ratio, and then basic mixture proportion range was determined based on workability considerations, including desirable fiber dispersion without segregation. Subsequent direct tensile tests were performed on the composites with W/C's of 47.5% and 60% at 28 days that the fiber reinforced mortar exhibited high ductile uniaxial tension property, represented by a maximum strain capacity of 2.2%, which is around 100 times the strain capacity of normal concrete. Also, compressive tests were performed to examine high ductile fiber reinforced mortar under the compression. The test results showed that the measured value of compressive strength was from 26MPa to 34 MPa which comes under the strength of normal concrete at 28 days.