• 제목/요약/키워드: tensile-shear test

Search Result 516, Processing Time 0.029 seconds

Suggestion, Design, and Evaluation of a New Modified Double Tee Slabs (새로운 개량 더블티 슬래브의 제안, 설계 및 평가)

  • Yu, Sung-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.809-820
    • /
    • 2008
  • A new modified full scale double tee slabs with the length of nib plate - 1,500 mm were suggested, designed, and experimentally evaluated up to the loading of flexural failure. This slabs were composed of the tee section which was same to original PCI double tee and the plate section which was modified in a new shape, and the prestressing force was applied at the bottom of tee section only. This specimens were made from the domestic precast factory. The safety and serviceability of the modified nib plate with the dapped ends were evaluated up to the ultimate flexural strength of tee section. As the experimental loading increased, the flexural crackings developed first in the bottom of the slab and they changed to the increased flexural shear and inclined shear crackings in the nib and dapped portion of the double tees. The suggested modified double tee slabs failed in ductile above the design loading with many evenly distributed flexural crackings. The thickness of nib plate - 250 mm does not show any cracking under the service loading and show several minor flexural cracking up to the ultimate state of tee portion. The proposed specimens were satisfied with the strength and ductility requirements in the design code provisions in the tests. Additional experimental tests are required to reduce the depth and tensile reinforcement of nib plate concrete for the practical use of this system effectively.

Experimental Study on Strength of Austentic Stainless Steel (STS 304L) Fillet-Welded Connection with Weld Metal Fracture According to Welding Direction (용접방향에 따른 오스트나이트계 스테인리스강(STS304L) 용착금속파단 용접접합부의 내력에 관한 실험적 연구)

  • Kim, Tae Soo;Lee, Hoochang;Hwang, Bokyung;Cho, Taejun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.81-89
    • /
    • 2018
  • Austenitic stainless steels have excellent corrosion resistance, durability and fire resistance. Especially, since STS304L among austenitic types is a low-carbon variation of STS304 and has excellent intergranular corrosion resistance, it can often be used under the welded condition without heat treatment after field welding. This paper investigated ultimate behaviors such as ultimate strength and weld metal fracture mechanism of STS304L fillet-welded connections with TIG(tungsten inert gas) welding through test results. Main variables of specimens are weld length and welding direction against loading. Fracture of specimens are classified into three modes(tensile fracture, shear fracture and block shear fracture). Ultimate strengths were compared according to the welding direction and weld length and TFW series with transverse fillet weld had the highest strength compared with other types(LFW series with longitudinal fillet weld and FW series with all round weld). It is known that current design specifications such as KBC 2016 and AISC2010 underestimated the strength of TFW and LFW specimens and provided unconservative estimates for FW specimens. Finally, strength equations were proposed considering material properties of STS 304L material.

Behavior of Reinforced Concrete Inclined Column-Beam Joints (철근콘크리트 경사기둥-보 접합부의 거동)

  • Kwon, Goo-Jung;Park, Jong-Wook;Yoon, Seok-Gwang;Kim, Tae-Jin;Lee, Jung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.2
    • /
    • pp.147-156
    • /
    • 2012
  • In recent years, many high-rise buildings have been constructed in irregular structural system with inclined columns, which may have effect on the structural behavior of beam-column joints. Since the external load leads to shear and flexural forces on the inclined columns in different way from those on the conventional vertical columns, failure mode, resistant strength, and ductility capacity of the inclined column-beam joints may be different than those of the perpendicular beam-column joints. In this study, six RC inclined beam-column joint specimens were tested. The main parameter of the specimens was the angle between axes of the column and beam (90, 67.5, and 45 degree). Test results indicated that the structural behavior of conventional perpendicular beam-column joint was different to that of the inclined beam-column joints, due to different loading conditions between inclined and perpendicular beam-column joints. Both upper and lower columns of perpendicular beam-column joints were subjected to compressive force, while the upper and lower columns of the inclined beam-column joints were subjected to tensile and compressive forces, respectively.

Design and Verification of Housing and Memory Board for Downsizing for Crash Protected Memory Module (충돌보호메모리모듈의 소형화를 위한 하우징 및 메모리 보드 설계와 검증)

  • Kim, Jun-Hyoung;Kim, Jung-Pil;Kim, Jeong-Yeol;Kim, Tae-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.1
    • /
    • pp.81-88
    • /
    • 2020
  • Flight data recorder is a equipment that records data required for investigation of aircraft accidents and should be developed in compliance with the ED-112A standard. Unlike general data storage device, flight data recorder must be able to recover data after an aircraft accident, requiring a housing and a memory board to protect data in extreme environments. To attain this performance, we designed a housing that can withstand the test by analyzing the physical environment of the impact, shear/tensile, penetration resistance and static crush test of the crash survival test and minimized the size and weight compared to the existing one in consideration of the installation of the aircraft in this paper. Insulation material and thermal block material were applied to endure high and low temperature fire so that the internal temperature does not rise above 150℃ even in 260℃, 10 hour environment. In addition, the memory board is designed to minimize the size and we devise a hoping programming method to prevent continuous data loss of more than 16 seconds. Through this, Crash protected memory module that satisfies ED-112A was completed.

An Experimental Study on Concrete Bond Behavior According to Grid Spacing of CFRP Grid Reinforcement (격자형 CFRP 보강재의 격자간격에 따른 콘크리트 부착거동에 대한 실험적 연구)

  • Noh, Chi-Hoon;Jang, Nag-Seop;Oh, Hongseob
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.73-81
    • /
    • 2022
  • Recently, as the service life of structures increased, the load-carrying capacity of deteriorated reinforced concrete, where corrosion of reinforcing bars occurs due to various causes, is frequently decreased. In order to address this problem, many studies on the bond characteristic of FRP (Fiber Reinforced Polymer) bars with corrosion resistance, light weight and high tensile strength have been conducted, however there are not many studies on the bond characteristic of grid-typed CFRP embedded in concrete. Therefore, in order to evaluate the bond characteristics of grid-typed CFRP and its usability as a substitute for steel rebar, a pull-out test is performed using the longitudinal bond length and transverse grid length of the grid-typed CFRP as variables. Through the pull-out test, the bond load-slip curve of the grid-typed CFRP is derived, and the bond behavior is analyzed. The total bond load equation is proposed as the sum of the bond force of the longitudinal bond length and the shear force of the grid in the transverse direction. Also, expressing the area of the bond load-slip curve as total work, the change in dissipated energy with respect to the slip is analyzed to examine the effect of the tranverse grid on the bond force.

Nondestructive Evaluation and Microfailure Mechanisms of Single Fibers/Brittle Cement Matrix Composites using Electro-Micromechanical Technique and Acoustic Emission (Electro-Micromechanical 시험법과 Acoustic Emission을 이용한 단섬유/시멘트 복합재료의 미세파괴 메커니즘과 비파괴적 평가)

  • 박종만;이상일;김진원;윤동진
    • Composites Research
    • /
    • v.14 no.3
    • /
    • pp.18-31
    • /
    • 2001
  • Interfacial and microfailure properties of the modified steel, carbon and glass fibers/cement composites were investigated using electro-pullout test under tensile and compressive tests with acoustic emission (AE). The hand-sanded steel composite exhibited higher interfacial shear strength (IFSS) than the untreated and even neoalkoxy zirconate (Zr) treated steel fiber composites. This might be due to the enhanced mechanical interlocking, compared to possible hydrogen or covalent bonds. During curing process, the contact resistivity decreased rapidly at the initial stage and then showed a level-off. Comparing to the untreated case, the contact resistivity of either Zr-treated or hand-sanded steel fiber composites increased to the infinity at latter stage. The number of AE signals of hand-sanded steel fiber composite was much more than those of the untreated and Zr-treated cases due to many interlayer failure signals. AE waveforms for pullout and frictional signals of the hand-sanded composite are larger than those of the untreated case. For dual matrix composite (DMC), AE energy and waveform under compressive loading were much higher and larger than those under tensile loading, due to brittle but well-enduring ceramic nature against compressive stress. Vertical multicrack exhibits fur glass fiber composite under tensile test, whereas buckling failure appeared under compressive loading. Electro-micromechanical technique with AE can be used as an efficient nondestructive (NDT) method to evaluate the interfacial and microfailure mechanisms for conductive fibers/brittle and nontransparent cement composites.

  • PDF

Effects of laser-irradiated dentin on shear bond strength of composite resin (레이저 처리가 상아질과 복합 레진의 결합에 미치는 영향)

  • Kim, Sung-Sook;Park, Jong-Il;Lee, Jae-In;Kim, Gye-Sun;Cho, Hye-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.5
    • /
    • pp.520-527
    • /
    • 2008
  • Purpose: This study was conducted to evaluate the shear bond strength of composite resin to dentin when etched with laser instead of phosphoric acid. Material and methods: Recently extracted forty molars, completely free of dental caries, were embedded into acrylic resin. After exposing dentin with diamond saw, teeth surface were polished with a series of SiC paper. The teeth were divided into four groups composed of 10 specimens each; 1) no surface treated group as a control 2) acid-etched with 35%-phosphoric acid 3) Er:YAG laser treated 4) Er,Cr:YSGG laser treated. A dentin bonding agent (Adapter Single Bond2, 3M/ESPE) was applied to the specimens and then transparent plastic tubes (3 mm of height and diameter) were placed on each dentin. The composite resin was inserted into the tubes and cured. All the specimens were stored in distilled water at $37^{\circ}C$ for 24 hours and the shear bond strength was measured using a universal testing machine (Z020, Zwick, Germany). The data of tensile bond strength were statistically analyzed by one-way ANOVA and Duncan's test at ${\alpha}$= 0.05. Results: The bond strengths of Er:YAG laser-treated group was $3.98{\pm}0.88$ MPa and Er,Cr:YSGG laser-treated group showed $3.70{\pm}1.55$ MPa. There were no significant differences between two laser groups. The control group showed the lowest bond strength, $1.52{\pm}0.42$ MPa and the highest shear bond strength was presented in acid-etched group, $7.10{\pm}1.86$ MPa (P < .05). Conclusion: Laser-etched group exhibited significantly higer bond strength than that of control group, while still weaker than that of the phosphoric acid-etched group.

Estimation of Local Strain Distribution of Shear-Compressive Failure Type Beam Using Digital Image Processing Technology (화상계측기법에 의한 전단압축파괴형 보의 국부변형률분포 추정)

  • Kwon, Yong-Gil;Han, Sang-Hoon;Hong, Ki-Nam
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.2
    • /
    • pp.121-127
    • /
    • 2009
  • The failure behavior of RC structure was exceedingly affected by the size and the local strain distribution of the failure zone due to the strain localization behavior on the tension softening materials. However, it is very difficult to quantify and assess the local strain occurring in the failure zone by the conventional test method. In this study, image processing technology, which is available to measure the strain up to the complete failure of RC structures, was used to estimate the local strain distribution and the size of failure zone. In order to verify the reliability and validity for the image processing technology, the strain transition acquired by the image processing technology was compared with strain values measured by the concrete gauge on the uniaxial compressive specimens. Based on the verification of image processing technology for the uniaxial compressive specimens, the size and the local strain distribution of the failure zone of deep beam was measured using the image processing technology. With the results of test, the principal tensile/compressive strain contours were drawn. Using the strain contours, the size of the failure zone and the local strain distribution on the failure of the deep beam was evaluated. The results of strain contour showed that image processing technology is available to assess the failure behavior of deep beam and obtain the local strain values on the domain of the post-peak failure comparatively.

Optimization of Resistance Spot Weld Condition for Single Lap Joint of Hot Stamped 22MnB5 by Taking Heating Temperature and Heating Time into Consideration (핫스템핑 공정에서 가열온도 및 유지시간을 고려한 22MnB5의 단일겹치기 저항 점용접 조건 최적화)

  • Choi, Hong-Seok;Kim, Byung-Min;Park, Geun-Hwan;Lim, Woo-Seung;Lee, Sun-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.10
    • /
    • pp.1367-1375
    • /
    • 2010
  • In this study, optimization of the process parameters of the resistance spot welding of a sheet of aluminum-coated boron alloyed steel, 22MnB5, used in hot stamping has been performed by a Taguchi method to increase the strength of the weld joint. The process parameters selected were current, electrode force, and weld time. The heating temperature and heating time of 22MnB5 are considered to be noise factors. It was known that the variation in the thickness of the intermetallic compound layer between the aluminum-coated layer and the substrate, which influences on the formation of nugget, was generated due to the difference of diffusion reaction according to heating conditions. From the results of spot weld experiment, the optimum weld condition was determined to be when the current, electrode force, and weld time were 8kA, 4kN, and 18 cycles, respectively. The result of a test performed to verify the optimized weld condition showed that the tensile strength of the weld joint was over 32kN, which is considerably higher than the required strength, i.e., 23kN.

Laboratory Performance Evaluation of Chemcrete Modified Asphalt Mixtures (켐크리트 개질 아스팔트 혼합물의 실내 공용성 평가)

  • Park, Kyung-Il;Lee, Hyun-Jong;Lee, Kwang-Ho;Rhee, Suk-Keun
    • International Journal of Highway Engineering
    • /
    • v.3 no.3 s.9
    • /
    • pp.119-133
    • /
    • 2001
  • The stiffness of chemcrete modified asphalt mixtures increase rapidly with time in the presence f oxygen and high temperature, Sometimes the asphalt pavements that have chemcrete modified asphalt mixture applied on the surface none show premature cracking because of the excessive increase in the stiffness f the asphalt mixtures. To mitigate this premature cracking, the chemcrete modified mixtures have been used as a base course material. In this study, the performance of the chemcrete modified asphalt binder and mixtures are investigated through a course of various laboratory tests including dynamic shear rheometer and bending beam rheometer tests for binders and uniaxial tensile fatigue, wheel tracking, and moisture damage tests for the mixtures. And also the resilient modulus of the conventional and chemcrete modified mixtures are compared based on the test results conducted on the specimens obtained from various in-situ test sections. It can be concluded from the tests results that the chemcrete modified mixtures show better rutting resistance than conventional mixtures. The chemcrete modified mixtures may have low temperature cracking when it is applied in the cold region. The stiffness of chemcrete modified mixtures is approximately 50 percent higher than that of conventional mixtures more than two years after the chemcrete modified mixture was applied in the base course.

  • PDF