• Title/Summary/Keyword: tensile stress region

Search Result 202, Processing Time 0.021 seconds

Reinforcement design for the anchorage of externally prestressed bridges with "tensile stress region"

  • Liu, C.;Xu, D.;Jung, B.;Morgenthal, G.
    • Computers and Concrete
    • /
    • v.11 no.5
    • /
    • pp.383-397
    • /
    • 2013
  • Two-dimensional tensile stresses are occurring at the back of the anchorage of the tendons of prestressed concrete bridges. A new method named "tensile stress region" for the design of the reinforcement is presented in this paper. The basic idea of this approach is the division of an anchor block into several slices, which are described by the tensile stress region. The orthogonal reinforcing wire mesh can be designed in each slice to resist the tensile stresses. Additionally the sum of the depth of every slice defined by the tensile stress region is used to control the required length of the longitudinal reinforcement bars. An example for the reinforcement design of an anchorage block of an external prestressed concrete bridge is analyzed by means of the new presented method and a finite element model is established to compare the results. Furthermore the influence of the transverse and vertical prestressing on the ordinary reinforcement design is taken into account. The results show that the amount of reinforcement bars at the anchorage block is influenced by the layout of the transverse and the vertical prestressing tendons. Using the "tensile stress region" method, the ordinary reinforcement bars can be designed more precisely compared to the design codes, and arranged according to the stress state in every slice.

The application of forman equation for fatigue crack propagation in welding residual stress region (溶接殘留應力領域에서의 疲勞균열傳播에 대한 Forman式의 適用)

  • 김상철;이용복
    • Journal of Welding and Joining
    • /
    • v.5 no.1
    • /
    • pp.42-56
    • /
    • 1987
  • Fatigue Fracture behaviors of the TIG-welded aluminum alloys, such as Al 2024-T4, A1 5050-0 and Al 7075-T7 were investigated when a crack propagated from tensile residual stress region and compressive residual stress region. The experimental values were compared with the values expected by the Forman equation. The experimental results are summarized as the following: (1) In case of fatigue crack propagation from residual stress region, the values predicted by Forman equation were Found to exactly corresponded to the experimental values. (2) When the stress intensityfactors affected by compressive residual stress, Kres, were greater than the stress intensity factors by minimum applied stresses. Kmin, the Forman equation was found to be improper to be applied directly, but the equation appeared to be proper, if the stress ratio was modified to zero. (3) The experimental results confirmed that residual stress was relaxed by repeated tensile loading and the relaxing trend was greater in case of compressive residual stress than that of tensile residual stress.

  • PDF

Reinforcement design of the top and bottom slabs of composite box girder with corrugated steel webs

  • Zhao, Hu;Gou, Hongye;Ni, Ying-Sheng;Xu, Dong
    • Steel and Composite Structures
    • /
    • v.33 no.4
    • /
    • pp.537-550
    • /
    • 2019
  • Korea and Japan have done a lot of research on composite girders with corrugated steel webs and built many bridges with corrugated steel webs due to the significant advantages of this type of bridges. Considering the demanding on the calculation method of such types of bridges and lack of relevant reinforcement design method, this paper proposes the spatial grid analysis theory and tensile stress region method. First, the accuracy and applicability of spatial grid model in analyzing composite girders with corrugated steel webs was validated by the comparison with models using shell and solid elements. Then, in a real engineering practice, the reinforcement designs from tensile stress region method based on spatial grid model, design empirical method and specification method are compared. The results show that the tensile stress region reinforcement design method can realize the inplane and out-of-plane reinforcement design in the top and bottom slabs in bridges with corrugated steel webs. The economy and precision of reinforcement design using the tensile stress region method is emphasized. Therefore, the tensile stress region reinforcement design method based on the spatial grid model can provide a new direction for the refined design of composite box girder with corrugated steel webs.

Redistribution of Welding Residual Stress and its Effects on Fatigue Crack Propagation (피로균열이 진전할 때 용접잔류응력의 재분포와 그 영향)

  • 이용복;조남익
    • Journal of Welding and Joining
    • /
    • v.13 no.4
    • /
    • pp.155-162
    • /
    • 1995
  • Redistribution of residual stress and its effects during fatigue crack propagates from tensile residual stress region in weldment are investigated. Tests are performed by using welded CCT specimens of structual rolling steel (SS400) and it makes fatigue crack propagate from tensile residual stress region. For this study tension-tension loading type is selected by external loading condition and magnetizing stress indicator is used correctly to measure redistribution of residual stress according to fatigue crack growth and number of loading cycles. From this result, it is proved that redistribution of residual stress is mainly consist of residual stress released by fatigue crack growth. When fatigue crack propagates from tensile residual stress region residual stress are redistributed and it makes fatigue crack growth rate largely increase. Fatigue crack growth rate is low in case of redistributed residual stress compare with initial distributed residual stress.

  • PDF

Evaluation of Tensile Properties in Small Punch Test Using Finite Element Analysis (유한요소해석을 이용한 소형펀치시험에서의 인장물성평가)

  • Lee, Jae-Bong;Kim, Min-Chul;Park, Jai-Hak;Lee, Bong-Sang
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.31-36
    • /
    • 2003
  • In this study a relationship between SP curves and tensile properties was investigated by FE analysis on SP test with various assumed tensile properties. For the accuracy of FE analysis, SP test and tensile test were performed and those results were compared with FE analysis results. The yield load(Py) defined from the intersection point of two lines tangent to the elastic bending region and plastic bending region. And it was related specifically with yield stress(${\sigma}_0$) in FE analysis result curves. The slopes of FE analysis result curves normalized by yield stress(${\sigma}_0$) reflected the change of tensile properties regardless of yield stress(${\sigma}_0$) variation. Empirical relations were derived from these results. Tensile properties from these relations showed good agreement in FE analysis curve and tested curve.

  • PDF

Ultimate Compressive Strength Analysis of TMCP High Tensile Steel Plates with HAZ Softening(2nd Report) (HAZ 연화부를 가진 TMCP형 고장력강판의 압축최종강도에 관한 연구 - 제 2 보)

  • 백점기;고재용
    • Journal of Welding and Joining
    • /
    • v.9 no.2
    • /
    • pp.44-50
    • /
    • 1991
  • The use of high tensile steel plates is increasing in the fabrication of ship and offshore structures. The softening region which has lower yield stress than base metal is located to prevent cracking in the conventional high tensile steel. Also, thermo mechanical control process(TMCP) steel with low carbon equivalent has the softening region which occurs in the heat affected zone when high heat input weld is carried out. The softening region in the high tensile steel gives rise to serious effect on structural strength such as tensile strength, fatigue strength and ultimate strength. In order to make a reliable structural design using high tensile steel plates, the influence of the softening on plate strength should be evaluated in advance. In the previous paper, the authors discussed the ultimate compressive strength of 50HT steel square plates with softening region. In this paper, the ultimate compressive strength with varying the yield stress of softening region and the aspect ratio of the plate is investigated by using the elasto-plastic large deformation finite element method.

  • PDF

The Effect of Residual Stress on Stress Intensity Factor and Fatigue Crack Growth Rate (잔류응력이 응력세기계수와 피로균열성장율에 미치는 영향)

  • Kang-Yong,Lee;Hong-Key,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.21 no.1
    • /
    • pp.43-47
    • /
    • 1984
  • The purpose of this paper is to investigate theoretically the effect of residual stress due to welding in stress intensity factor of a plate containing the Model I Crack in different crack size and location, and on fatigue crack growth rate. The initiation of crack is found to be possible only in the region of tensile residual stress. The most dangerous crack has the values of d/b and a/b equal to about 0.6 and 1.0, respectively, where d/b is the ratio of distance from the crack to welding bead and the width of tensile residual stress region and a/b is the ratio of crack length and tensile residual stress region. The crack perpendicular to and on the line of welding bead and with a/b equal to about 0.6 has maximum stress intensity factor. The theoretical fatigue crack growth rate under residual stress and applied stress, which is obtained from Forman's Law by stress superposition, is relatively in good agreement with Glinka's[8] experimental value. The fatigue crack growth is shown to be retarded due to residual stress distribution.

  • PDF

Determination of a critical damage by experiment and analysis of tensile test (인장시험의 실험과 해석 결과를 이용한 임계손상도의 결정)

  • Jang, S.M.;Eom, J.G.;Lee, M.C.;Joun, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.292-296
    • /
    • 2008
  • A new method of evaluating critical damage values of commercial materials is presented in this paper. The method is based on the previous study of the methodology [1] of acquisition of true stress-strain curves or flow stress curves over large strain from the tensile test in which the flow stress is described by the Hollomon law-like form, that is, by the strain dependent strength coefficient and the strain hardening exponent. The strain hardening exponent is calculated from the true strain at the necking point to meet the Considere condition. The strength coefficient is assumed to be constant before necking and represented by a piecewise linear function of strain after necking. With the predicted flow stress, a tensile test is simulated by a rigid-plastic finite element method with higher accuracy of less than 0.5% error between experiments and predictions. The instant when the fracture begins and thus the critical damage is obtained is determined by observing the stress variation at the necked region. It is assumed that the fracture due to damage begins when the pattern of stress around the necked region changes radically. The method is applied to evaluate the critical damage of a low carbon steel.

  • PDF

Rheological Properties of Cooked Noodles with Different Starch Content Using Tensile Tests

  • Kim, Su-Kyoung;Lee, Seung-Ju
    • Food Science and Biotechnology
    • /
    • v.18 no.4
    • /
    • pp.1013-1018
    • /
    • 2009
  • Several rheological terms were introduced to estimate the properties of cooked noodles with different starch content using tensile tests. Ring-shaped specimens were prepared by connecting both ends of the noodle strip before cooking. Hencky strain and rate, as well as true stress were applied in constant deformation tests. The elastic region on the curves of strain vs. stress was not clearly identified. Strain hardening in the subsequent plastic region was more prominent in low-starch noodles. Elongational viscosities at lower strain rates were used to differentiate noodles with different starch content, representing the dominant effect of protein content in the range of lower strain rates. In stress relaxation tests, the reciprocal of Peleg's constant $K_1$ (initial decay rate) and $K_2$ (asymptotic level) increased and decreased respectively, with an increase in starch content. This indicated that addition of starch contributed to the noodles becoming viscous liquid rather than elastic solid.

An Experimental Study on the Residual Stress Distribution at Circumferential Welds in Pipes (파이프 원주방향 용접부의 잔류응력분포 특성에 관한 실험적 연구)

  • Namkoong, Jae-Gwan;Hong, Jae-Hak
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.8 no.1
    • /
    • pp.41-49
    • /
    • 1991
  • A knowledge of the resdual stress distribution at circumferential weldments can normally increase the accuracy of a fracture assessment in pipe line. In this paper, we present the measurements about the residual stress distributions at three kinds of circumferential butt welded pipes using the holl drilling strain gage method. By this experiment, we have obtined the following characteristics. At the inner surface of the pipe region near the center line of welding is under high tensile residual stress. However, as the distance from the center line of welding increases, the tensile component decreases and finally becomes compressive residual stress at region far away from the center line of welding. The longitudinal residual stress at the outer surface is compressive regardless of the diameter of pipe and the circumferential stress is changed from compressive to tensile as pipe diameter increases. The results also demonstrate that the residual stress is mainly caused by self-restraint bending force in the pipe welding.

  • PDF