• 제목/요약/키워드: tensile strength reduction

검색결과 516건 처리시간 0.028초

가속냉각강 GMAW 용접이음부의 강도 변화 (Variation of Welded-Joint Tensile Strength of GMA Welded Accelerated-Cooled Steel)

  • 방국숙;정성욱
    • Journal of Welding and Joining
    • /
    • 제18권6호
    • /
    • pp.83-88
    • /
    • 2000
  • Variation of welded-joint hardness and tensile strength of a accelerated-cooled fine-grained ferritic-pearlitic steel with heat input was investigated. In a weld heat-affected zone, a softened zone was formed and it had lower hardness than that of a base metal. While the width of a softened zone increased continuously with an increase of heat input up to 100kJ/cm. the minimum hardness in a softned zone was almost constant after a continuos decrease up to 60KJ/cm. Because of a softened zone, the welded-joint was fractured in the HAZ and its maximum reduction of tensile strength was about 20%. Measured welded-joint tensile strength and calculated minimum tensile strength in a welded-joint was almost same, which means that the plastic restraint of a softened zone did not occur in this experiment. It is believed that as a softened zone width-to-specimen thickness ratio is as high as 2~6 in this experiment, the plastic restraint effect does not occur. Theoretical analysis shows that the plastic restraint effect occurs only when the ratio is below 0.5.

  • PDF

섬유종류에 따른 섬유보강 모르타르의 파괴저감성능 평가 (Evaluation of fracture reduction performance of fiber reinforced mortar according to fiber type)

  • 노종찬;김규용;김홍섭;구경모;윤민호;유재철
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2013년도 추계 학술논문 발표대회
    • /
    • pp.38-39
    • /
    • 2013
  • In this study, in regard to fiber reinforced mortar mixing steel fiber and 4types of organic fiber, impact test was carried out. Because to predict fracture reduction performance with flexural, tensile strength when types of fiber were different as impact reduction performance of concrete is closely related with toughness such as flexural strength, tensile strength and fracture energy etc. As a result, enhancement of toughness by fiber reinforcement controls the spall of rear. On the other hand in case of steel fiber relatively turned up high toughness in appropriate load compared with organic fiber but in same mixing rate, impact reduction performance by projectile showed low performance due to few number of an individual of mixing.

  • PDF

필라멘트 와인딩 복합재의 환경노화에 따른 기계적물성 평가 (Behaviors of Mechanical Properties of Filament-Winding-Laminated Composites due to Environmental Aging)

  • 최낙삼;윤영주;이상우;김덕재
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2006년도 제26회 춘계학술대회논문집
    • /
    • pp.31-35
    • /
    • 2006
  • Degradation characteristics of filament-winded composites due to accelerated environmental aging have been evaluated under high temperature, water immersion and thermal impact conditions. Two kinds of laminated composites coated by an urethane resin have been used: carbon-fiber reinforced epoxy(T700/Epon-826, CFRP) and glass-fiber reinforced phenolic (E-glass/phenolic, GFRP). For tensile strength of $0^{\circ}$ composites, CFRP did high reduction by 25% under the influence of high temperature and water while CFRP showed little degradation. However for water-immersed $90^{\circ}$ composites both CFRP and GFRP showed high reduction in tensile strength. Bending strength and modulus of $90^{\circ}$ composites were largely reduced in water-immersion as well as high temperature environment. Urethane coating on the composite surface improved the bending properties by 20%, however hardly showed such improvement for water-immersed $90^{\circ}$ composites.

  • PDF

필라멘트 와인딩 복합적층재의 환경가속 노화시험 평가 (Degradation Characteristics of Filament-Winding-Laminated Composites Under Accelerated Environmental Test)

  • 김덕재;윤영주;최낙삼
    • 대한기계학회논문집A
    • /
    • 제31권3호
    • /
    • pp.295-303
    • /
    • 2007
  • Degradation behaviors of filament-winded composites have been evaluated under the accelerated environmental test of high temperature, water immersion and thermal impact conditions. Two kinds of laminated composites coated by an urethane resin have been used: carbon-fiber reinforced epoxy(T700/Epon-826, CFRP) and glass-fiber reinforced phenolic (E-glass/phenolic, GFRP). For tensile strength of $0^{\circ}$ composites, CFRP showed little degradation while GFRP did high reduction by 25% under the influence of high temperature and water However for water-immersed $90^{\circ}$ composites tensile strength of both CFRP and GFRP showed high reduction. Bending strength and modulus of $90^{\circ}$ composites were largely reduced in water-immersion as well as high temperature environment. Urethane coating on the composite surface improved the bending properties by 20%, however hardly showed such improvement for water-immersed $90^{\circ}$ composites. In case of shear strength and modulus, both CFRP and GFRP showed high reduction by water-Immersion test but did a slight increase by high temperature and thermal impact conditions.

냉간 전조압연 공정에서의 성형조건에 따른 재료의 물성변화분석 (Experimental Study for Enhancement of Material Strength In Cold Cross Wedge Rolling Process)

  • 윤덕재;김인호;최석우;임성주;이형묵
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 추계학술대회논문집
    • /
    • pp.319-324
    • /
    • 2004
  • Cross wedge rolling process is utilized to manufacture multi-stepped axis symmetrical parts. This process is generally performed under high temperature conditions in order to induce serious deformation. But cold cross wedge rolling process has been rarely studied due to the limits of deformation. Recently, the cold cross wedge rolling process has been utilized to enhance the material strength in specified parts of manufactured products. In this paper, experimental researches were carried out with various forming conditions of cold cross wedge rolling process in order to suggest the design guidance to make preform for cold cross wedge rolling. The tensile strength and the surface hardness of specified region were compared to that of initial material with the variation of the area reduction and the rotational speed of rolling die. With respect to the area reduction, the maximum tensile strength was linearly increased and the surface hardness was rapidly increased within lower percent of area reduction. The surface hardness was saturated over the rotational die speed of 0.8 RPM.

  • PDF

0.19C - 1.17Cr 강의 냉간인발조직과 기계적 성질 (The Microstructure and Mechanical Property of 0.19C-1.17Cr Steel with Cold Drawing)

  • 신정호;장병록
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 제4회 압출 및 인발가공 심포지엄
    • /
    • pp.85-90
    • /
    • 2001
  • The microstructure and mechanical property of 0.19C-1.17Cr steel were investigated with cold drawing. This commercial steel has the microstructure that is consist of ferrite and pearlite. The tensile and yield strength are increased as the reduction ratio of cold drawing is increased. It was clear that mechanical properties could be improved by combination of the heat treatments and reduction ratio. Yield strength. tensile strength, and impact value were formulated as a constitutive function of cold drawing ratio, respectively.

  • PDF

금형주조법에 의한 TiNi/6061Al 복합재료의 미세조직에 미치는 냉간가공도의 영향 (Effect of the Degree of Cold Working on the Microstructures for TiNi/6061Al Composites by Permanent mold Casting)

  • 박성기;신순기;박광훈;성장현;박영철;이규창;이준희
    • 한국재료학회지
    • /
    • 제11권12호
    • /
    • pp.1028-1034
    • /
    • 2001
  • The 2.5 vol% TiNi/6061Al composites were fabricated by permanent mold casting. The microstructures and tensile test for the cold rolled composites with maximum 50% reduction ratio were investigated. In the case of TiNi fiber with 2mm interval in preform, the interface bonding of fabricated composites were good, interface diffusion layer of this composites was made by the mutual diffusion. Transverse section of TiNi fiber was decreased with increasing reduction ratio and longitudinal section of TiNi fiber showed multiple wave phenomenon. And the tensile strength of composites at 38% reduction ratio was the most high. In the case of over 38% reduction ratio, the decrease of the tensile strength was due to TiNi fiber rupture by excess working. The fracture mode was appeared brittle fracture with increasing reduction ratio.

  • PDF

Investigation of Tensile Behaviors in Open Hole and Bolt Joint Configurations of Carbon Fiber/Epoxy Composites

  • Dong-Wook Hwang;Sanjay Kumar;Dong-Hun Ha;Su-Min Jo;Yun-Hae Kim
    • Composites Research
    • /
    • 제36권4호
    • /
    • pp.259-263
    • /
    • 2023
  • This study investigated the open hole tensile (OHT) properties of carbon fiber/epoxy composites and compared them to bolt joint tensile (BJT) properties. The net nominal modulus and strength (1376 MPa) were found to be higher than the gross nominal strength (1041 MPa), likely due to increasing hole size. The OHT and BJT specimens exhibited similar stiffness, as expected without bolt rotation causing secondary bending. OHT specimens experienced a sharp drop in stress indicating unstable crack propagation, delamination, and catastrophic failure. BJT specimens failed through shear out on the bolt side and bearing failure on the nut side, involving fiber kinking, matrix splitting, and delamination, resulting in lower strength compared to OHT specimens. The strength retention of carbon fiber/epoxy composites with open holes was 66%. Delamination initiation at the hole's edge caused a reduction in the stress concentration factor. Filling the hole with a bolt suppressed this relieving mechanism, leading to lower strength in BJT specimens compared to OHT specimens. Bolt joint efficiency was calculated as 15%. The reduction in strength in bolted joints was attributed to fiber-matrix splitting and delamination, aligning with Hart Smith's bolted joint efficiency diagram. These findings contribute to materials selection and structural reliability estimation for carbon fiber/epoxy composites. They highlight the behavior of open hole and bolt joint configurations under tensile loading, providing valuable insights for engineering applications.

치수효과를 고려한 특별직교이방성 샌드위치 슬래브교량의 파괴강도해석 (Size Effects in the Failure of Specially Orthotropic Sandwich Slab Bridges)

  • 한봉구;이용호
    • 한국강구조학회 논문집
    • /
    • 제16권3호통권70호
    • /
    • pp.333-344
    • /
    • 2004
  • 복합재료는 건설공학 분야의 해석, 설계, 제작, 건설, 품질 제어 등에서 경제적이고 효율적인 재료로 사용될 수 있다. 많은 교량 구조물중 거더, 가로보로 이루어진 콘크리트 상판은 특별직교이방성판으로 거동한다. 이러한 경계조건을 갖는 단면 혹은 불규칙한 단면을 갖는 시스템은 해석적인 해를 구하기가 매우 어렵다. 이러한 문제에 대한 해석을 위해서 유한차분법이 이용되었다. 본 논문에서는 인장강도 감소율을 적용하여 파괴강도 해석을 수행하였다. 또한 이러한 경우에 대한 수치해석을 수행하였다. 응력영역에 대한 Tasi-Wu의 파괴기준을 적용하였다.

STS304 스테인리스강의 고온 인장거동의 통계적 특성과 음향방출 (A Statistical. Properties of Tensile Behaviors of STS304 Stainless Steel at Elevated Temperature and the Acoustic Emission)

  • 곽명규;김선진
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.68-74
    • /
    • 2002
  • The tensile tests to identify the statistical tensile properties and the acoustic emission characteristics were conducted for STS304 stainless steel at $600^{\circ}C,\;700^{\circ}C$. From tensile tests performed by constant cross head speed controls with 1mm/min, rates at each elevated temperature, the scatters were observed in tensile strength, reduction of area, elongation and the acoustic emission parameters. The effect of temperature on the scatter of tensile behavior was larger at $700^{\circ}C$. The distributions of tensile properties was well followed in 3-parameter Weibull. The AE counts and energy of the $700^{\circ}C$ specimens were smaller than the $600^{\circ}C$.

  • PDF