• Title/Summary/Keyword: tensile specimen

Search Result 1,244, Processing Time 0.03 seconds

Plastic Deformation Characteristic of AZ31 Magnesium alloy Sheet (AZ31 마그네슘 합금판재의 소성변형특성)

  • Park J. G.;Kim Y. S.;Kuwabara Toshihiko;You B. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.64-68
    • /
    • 2005
  • In recent years, there has been a growth of the manufacture and application of magnesium products because of its small specific gravity as well as its relatively high strength. However, there are so many studies to assure good formability because magnesium sheet alloy is difficult to form. In this study, uniaxial tensile and biaxial tensile test of AZ31 magnesium sheet alloy with thickness of 1.2mm were performed at room temperature. Uniaxial tensile test were performed until $7\%$ of engineering strain. R-values and stress-strain curve were obtained. Biaxial tensile tests with cruciform specimen were performed until the breakdown of the specimen occurs. The yield loci are made by application of plastic work theory. The results are compared with the theoretical predictions based on the Hill and Logan-Hosford model. However, next study will be performed at warm-temperature because the specimens are broken under the $0.5\%$ of equivalent strain at biaxial tensile test.

  • PDF

Microstructure and Tensile Properties of 700 MPa-Grade High-Strength and Seismic Resistant Reinforced Steel Bars (700 MPa급 고강도 및 내진 철근의 미세조직과 인장 특성)

  • Hong, Tae-Woon;Lee, Sang-In;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.28 no.7
    • /
    • pp.391-397
    • /
    • 2018
  • This study deals with the microstructure and tensile properties of 700 MPa-grade high-strength and seismic reinforced steel bars. The high-strength reinforced steel bars (600 D13, 600 D16 and 700 D13 specimens) are fabricated by a TempCore process, while the seismic reinforced steel bar (600S D16 specimen) is fabricated by air cooling after hot rolling. For specimens fabricated by the TempCore process, the 600 D13 and 600 D16 specimens have a microstructure of tempered martensite in the surface region and ferrite-pearlite in the center region, while the 700 D13 specimen has a microstructure of tempered martensite in the surface region and bainite in the center region. Therefore, their hardness is the highest in the surface region and shows a tendency to decrease from the surface region to the center region because tempered martensite has a higher hardness than ferrite-pearlite or bainite. However, the hardness of the 600S D16 specimen, which is composed of fully ferrite-pearlite, increases from the surface region to the center region because the pearlite volume fraction increases from the surface region to the center region. On the other hand, the tensile test results indicate that only the 700 D13 specimen with a higher carbon content exhibits continuous yielding behavior due to the formation of bainite in the center region. The 600S D16 specimen has the highest tensile-to-yield ratio because the presence of ferrite-pearlite and precipitates caused by vanadium addition largely enhances work hardening.

A Study on Tensile Strength of the 3D Printing Product According to the Nitrogen Concentration of Chamber Inside (챔버 내부의 질소 농도에 따른 3D프린팅 출력물의 인장 강도에 관한 연구)

  • Lee, Song Yeon;Huh, Yong Jeong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.1
    • /
    • pp.103-107
    • /
    • 2022
  • Scaffolds are the structures that safely protect sensors in various parts of the body. Because of scaffolds must protect sensors from load, the tensile strength of the scaffolds must be higher than 750 kgf/cm2. Currently, the tensile strength of scaffolds made with the 3d printer is 714 kgf/cm2. We confirm that the tensile strength of the scaffolds increase using air with high nitrogen concentration. In this study, we conducted experiments to find nitrogen concentrations in which the tensile strength of the specimen is higher than 750 kgf/cm2. The nitrogen control device and the nitrogen concentration sensor were installed in the chamber type 3d printer. The nitrogen concentration inside the 3d printer was changed by 5 % from 80 % to 100 %. Specimens of ASTM D 638 standard were produced under changed nitrogen concentration. We measured the tensile strength of specimens. We compared the tensile strength of specimens produced under each nitrogen concentration. We confirmed that when air with nitrogen concentration of 90 % was used, the tensile strength of scaffolds were 762 kgf/cm2.

An Evaluation of Tensile Characteristics of the Stress Aging Heat-treated SM45C Steel by Acoustic Emissions (음향방출법에 의한 SM45C 응력시효 처리재의 인장특성 평가)

  • Rhee, Zhang-Kyu;Park, Bog-Nam
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2009.04a
    • /
    • pp.413-421
    • /
    • 2009
  • This paper investigates tensile characteristics of the stress aging heat-treated SM45C steel which are aging temperature at $250^{\circ}C$, $300^{\circ}C$, aging time at 1, 3 hours, and applied load at 300, 400N conditions by using acoustic emission. Most suitable aging condition was aging temperature $300^{\circ}C$, aging time 1 hour, and aging applied load 300N. And increased yield load 28.3% than non-treatment specimen in this condition. AE energy in elastic limit increased about 16.7 times than non-treatment specimen. When aging time is 3 hours, yield load decreased than other conditions that possibility is high to have itself defect on inside the specimen or coarse grain size precipitation is different in happened over-aging phenomenon. Especially, in case of $300^{\circ}C$, 3 hours and 400N condition appeared AE energy in elastic limit fairly high about 30 times than non-treatment specimen. This is considered by emit a lot of energies when material causes plastic deformation because the ductility increases on specimen by over-aging phenomenon.

  • PDF

A Study on the 43$0^{\circ}C$ Degradation Behavior of Cast Stainless Steel(CF8M)(I);Evaluation of Degradation mechanism, Static and Fatigue Strength (주조 스테인리스강 CF8M의 43$0^{\circ}C$ 열화거동에 관한 연구(I);열화기구.정적 및 피로강도평가)

  • Gwon, Jae-Do;Park, Jung-Cheol;Lee, Yong-Seon;Lee, U-Ho;Park, Yun-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.8 s.179
    • /
    • pp.1910-1916
    • /
    • 2000
  • The five classes of the thermally aged CF8M specimen are prepared using an artificially accelerated aging method. Namely, after the specimens are held for 100, 300, 900, 1800, and 3600hrs at 430$^{\circ}C$ respectively, the specimens are water-cooled to room temperature. The impact energy variations are measures for both the aged and virgin specimens through the Charpy impact tests in addition to the microstructure observation, tensile, hardness and fatigue crack growth tests. From the present investigation the following results are obtained : 1) The difference among the thermally degraded specimens can be distinguished through their microstructures, 2) Hardness and tensile strength are increased to 300hrs, degradation specimen, while elongation and reduction area are decreased to 3600hrs degradation specimen, and impact energy is decreased to 1800hrs degradation specimen, 3) The FCG rates for thermally degraded specimens are larger than that of the virgin specimen.

Direct and indirect methods for determination of mode I fracture toughness using PFC2D

  • Sarfarazi, Vahab;Haeri, Hadi;Shemirani, Alireza Bagher
    • Computers and Concrete
    • /
    • v.20 no.1
    • /
    • pp.39-47
    • /
    • 2017
  • In this paper, mode I fracture toughness of rock was determined by direct and indirect methods using Particle Flow Code simulation. Direct methods are compaction tension (CT) test and hollow centre cracked quadratic sample (HCCQS). Indirect methods are notched Brazilian disk (NBD) specimen, the semi-circular bend (SCB) specimen, hollow centre cracked disc (HCCD), the single edge-notched round bar in bending (SENRBB) specimen and edge notched disk (END). It was determined that which one of indirect fracture toughness values is close to direct one. For this purpose, initially calibration of PFC was undertaken with respect to data obtained from Brazilian laboratory tests to ensure the conformity of the simulated numerical models response. Furthermore, the simulated models in five introduced indirect tests were cross checked with the results from direct tests. By using numerical testing, the failure process was visually observed. Discrete element simulations demonstrated that the macro fractures in models are caused by microscopic tensile breakages on large numbers of bonded discs. Mode I fracture toughness of rock in direct test was less than other tests results. Fracture toughness resulted from semi-circular bend specimen test was close to direct test results. Therefore semi-circular bend specimen can be a proper test for determination of Mode I fracture toughness of rock in absence of direct test.

The Analysis of Mechanical Properties of the High Frequency Induction Hardening SM45C Steel by Acoustic Emission (음향방출법에 의한 SM45C 고주파 열처리 강의 기계적 특성 평가)

  • Rhee, Zhang-Kyu
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.2
    • /
    • pp.93-100
    • /
    • 2011
  • This study deals with the high frequency induction hardening (HF at $850^{\circ}C$, 120kHz & 50kW condition) SM45C steel. (1) The HF specimen, which was tempered at $150^{\circ}C$, did not show any tempering effect. A brittle fracture occurred at rounded area of the tensile specimen. AE (acoustic emission) amplitude distribution showed between 45dB and 60dB. (2) A slip and fracture occurred at the hole area of the HF specimen which was tempered at $300^{\circ}C$. As they pass the yield point, the AE energy is increased intermittently and AE amplitude distribution exists between 70dB and 85dB. In addition, after imposing the maximum tensile load, AE signals showed high amplitude and energy distribution. The AE amplitude showed between 45dB and 70dB. (3) A brittle fracture occurred at HF specimen which was tempered at $450^{\circ}C$ as if it is torn in the direction of $45^{\circ}$ on parallel area over the both sides of the tensile specimen, which lead to several peak appeared in AE energy. It was found that the AE amplitude was relatively low and the AE energy was high.

A Study on Tensile Behavior of Transparent Polycarbonate (PC) Plate in the High Temperature (투명 폴리카보네이트 판재의 고온 인장 거동에 관한 연구)

  • Lee, Ho Jin;Ahn, Dong-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.1
    • /
    • pp.21-28
    • /
    • 2014
  • Recently, several researchers made their endeavor to manufacture the photobioreactor(PBR) with characteristic shapes form vacuum and blow forming process. Hence, behaviors of the transparent polycarbonate(PC) plate in the high temperature region should be examined to obtain the desired PBR case via vacuum and blow forming processes. The aim of this paper is to investigate tensile behavior of PC plate in the high temperature. Various tensile tests were performed using high temperature tensile testing machine. The influence of tensile speed, thickness and ambient temperature on tensile behavior in the high temperature was examined. The flow stress and tensile strength augmented when the tensile speed increased. In order to obtain proper flow curves with strain rate effects for different temperature of specimen, G'sell-Jonas model was adopted. The material constants of the G'sell-Jonas model were estimated. The flow curves of the PC plate considering the tensile speed, specimen thickness and temperature were obtained.

Machine Learning to Improve Tensile Strength of 3D-Printed Tensile Specimens (3D 프린팅된 인장 시편의 인장강도 향상을 위한 머신러닝)

  • Bum-Soo Kim;Seong-Yeol Han
    • Design & Manufacturing
    • /
    • v.18 no.1
    • /
    • pp.11-17
    • /
    • 2024
  • As the range of 3D printed applications expands, there is an increasing demand for the production of outputs wit h excellent durability and reliability. In this study, the highest tensile strength printing condition was identified by printing a tensile test specimen using PLA (Poly Lactic Acid) resin, considering various printing conditions. To determine the optimal combination of printing conditions, various machine learning algorithms were compared, and Stochastic Gradient Descent(SGD) demonstrated the best performance in predicting tensile strength. Using SGD, 3,000 sets of printing conditions were generated by combining various parameters, and the best printing condition set was selected. A tensile test specimen was then produced according to the selected printing conditions, and the subsequent tensile test yielded a measured tensile strength value of 41.86 N/mm2. The predicted tensile strength value by the SGD algorithm was 43.34 N/mm2, resulting in a prediction accuracy of 96.23%.

A study of hydrogen embrittlement behavior in E.B welded 250,300 grade 18% Ni maraging steel (전자비임 용접한 250 및 300 Grade 18% Ni Maraging 강의 수소취화 거동에 관한 연구)

  • 윤한상;정병호
    • Journal of Welding and Joining
    • /
    • v.5 no.2
    • /
    • pp.53-59
    • /
    • 1987
  • The effect of applied stress, current density and heat-treatment after welding on the time to fracture, fracture behavior was investigated by the method of constant load tensile testing under catholic charging with hydrogen in E.B. welded 250,300 Grade 18% Ni Maraging steel sheet. The main results obtained are as follows: 1. All specimen showed the characteristic delayed failure and the time to fracture showed decreasing tendency with the increase in current density and applied stress. 2. Hydrogen embitterment susceptibility of notched specimen after solution-treatment and aging after welding was more increased than that of aged smooth specimen and as welded specimen. 3. Fracture surface showed a typical intergranular fracture on the border, a dimple pattern in the center of specimen and some quasi-cleavage fracture between the intergranular and the dimple.

  • PDF