• Title/Summary/Keyword: tensile property tests

Search Result 197, Processing Time 0.027 seconds

Analysis of Notched Bar Tensile Tests for Inconel 617 at Room and Elevated Temperatures (Inconel 617 노치시편의 상온 및 고온 인장실험 해석)

  • Oh, Chang-Sik;Ma, Young-Wha;Yoon, Kee-Bong;Kim, Yun-Jae
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1818-1823
    • /
    • 2007
  • In this paper, notched bar tensile tests of Inconel 617 were performed at room ($20^{\circ}C$) and elevated ($800^{\circ}C$) temperature. Finite element analyses are also performed. It is found that, at the room temperature, smooth bar tensile test results could be used to simulate notched bar tensile tests. However, at the elevated temperature, notched bar tensile test results can not be simulated from smooth bar tensile test results. Metallurgical examination reveals that strength weakening results from many cavities over the specimens for smooth bar test at the elevated temperature. "True" tensile properties at the elevated temperature is found using FE simulations. It also suggests that cautious should be taken to determine tensile properties of Inconel 617 at elevated temperatures using smooth bar tests.

  • PDF

The effect of neutron irradiation on hydride reorientation and mechanical property degradation of zirconium alloy cladding

  • Jang, Ki-Nam;Kim, Kyu-Tae
    • Nuclear Engineering and Technology
    • /
    • v.49 no.7
    • /
    • pp.1472-1482
    • /
    • 2017
  • Zirconium alloy cladding tube specimens were irradiated at $380^{\circ}C$ up to a fast neutron fluence of $7.5{\times}10^{24}n/m^2$ in a research reactor to investigate the effect of neutron irradiation on hydride reorientation and mechanical property degradation. Cool-down tests from $400^{\circ}C$ to $200^{\circ}C$ under 150 MPa tensile hoop stress were performed. These tests indicate that the irradiated specimens generated a smaller radial hydride fraction than did the unirradiated specimens and that higher hydrogen content generated a smaller radial hydride fraction. The irradiated specimens of 500 ppm-H showed smaller ultimate tensile strength and plastic strain than those characteristics of the 250 ppm-H specimens. This mechanical property degradation caused by neutron irradiation can be explained by tensile hoop stress-induced microcrack formation on the hydrides in the irradiation-damaged matrix and subsequent microcrack propagation along the hydrides and/or through the matrix.

A Study on the Tensile Characteristics of Spectra/Vinylester Composites with Ion Beam Treatment of Spectra Fibers. (이온빔으로 표면처리한 스펙트라/비닐에스테르 복합재의 인장특성)

  • 신동혁;이경엽
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.4
    • /
    • pp.206-210
    • /
    • 2002
  • The use of Spectra fibers as fiber cloth is increasing because of their excellent impact resistance. However, a major limitation on the use of Spectra fibers is a chemical inertness. In this Study, Spectra fibers were surface-treated using Ar$^{+}$ ion beam under oxygen environment to improve the tensile property of Spectra/vinylester composites. The effect of surface treatment of Spectra fibers on the tensile property of Spectra/vinylester composites was determined from tensile tests using Spectra/vinylester composite specimens with and without a hole. It was found that the tensile stiffness and strength of surface-treated case were 22% and 17% higher than those of untreated case for specimens with no hole. The maximum load of surface-treated case was about 15% higher than that of untreated case for specimens with a hole.

Constitutive property behavior of an ultra-high-performance concrete with and without steel fibers

  • Williams, E.M.;Graham, S.S.;Akers, S.A.;Reed, P.A.;Rushing, T.S.
    • Computers and Concrete
    • /
    • v.7 no.2
    • /
    • pp.191-202
    • /
    • 2010
  • A laboratory investigation was conducted to characterize the constitutive property behavior of Cor-Tuf, an ultra-high-performance composite concrete. Mechanical property tests (hydrostatic compression, unconfined compression (UC), triaxial compression (TXC), unconfined direct pull (DP), uniaxial strain, and uniaxial-strain-load/constant-volumetric-strain tests) were performed on specimens prepared from concrete mixtures with and without steel fibers. From the UC and TXC test results, compression failure surfaces were developed for both sets of specimens. Both failure surfaces exhibited a continuous increase in maximum principal stress difference with increasing confining stress. The DP tests results determined the unconfined tensile strengths of the two mixtures. The tensile strength of each mixture was less than the generally assumed tensile strength for conventional strength concrete, which is 10 percent of the unconfined compressive strength. Both concretes behaved similarly, but Cor-Tuf with steel fibers exhibited slightly greater strength with increased confining pressure, and Cor-Tuf without steel fibers displayed slightly greater compressibility.

A Novel Tensile Specimen and Tensile Tester for Mechanical Properties of Thin Films (박막의 기계적 물성을 위한 새로운 인장 시편 및 인장 시험기)

  • Park, Jun-Hyub;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.6 s.261
    • /
    • pp.644-650
    • /
    • 2007
  • Mechanical property evaluation of micrometer-sized structures is necessary to help design reliable microelectromechanical systems(MEMS) devices. Most material properties are known to exhibit dependence on specimen size and such properties of microscale structures are not well characterized. This paper describes techniques developed for tensile testing of thin film used in MEMS. Epi-polycrystalline silicon is currently the most widely used material, and its tensile strength has been measured as 1.52GPa. We have developed a tensile testing machine for testing microscale specimen using electro-magnetic actuator. The field magnet and the moving coil taken from an audio-speaker were utilized as the components of the actuator. Structure of specimen was designed and manufactured for easy handling and alignment. In addition to the static tensile tests, it is described that new techniques and procedures can be adopted for high cycle fatigue test of a thin film.

A Study on Mechanical Properties of Fillet Weldment in Pipeline Repair Welding Using Sleeve (슬리브덮개를 이용한 배관 보수용접시 필릿용접부의 기계적특성에 관한 연구)

  • 김영표;김형식;김우식;홍성호
    • Journal of Welding and Joining
    • /
    • v.14 no.5
    • /
    • pp.49-58
    • /
    • 1996
  • In Korea Gas Corporation, as one of the pipeline repairing methods, damaged pipelines are sometimes treated with a temporally employment of split sleeve. On conducting the repair process, circumferential fillet and longitudinal groove welding usually must be included. For the case of groove welding, a considerable amount of R&D have been carried out related to property changes, while few study on the property change in fillet welding has been conducted. In this paper, so as to confirm the specification of fillet welding in terms of safety and reliability, properties changed by fillet welding were investigated for two welding processes. Qualifying tests such as reviewing macrostructure and nick-break tests were performed according to API 1104 and ASME section IX. In addition, tensile properties and hardness were evaluated according to KS B0841 and BS 4515. The fillet weld prepared by the qualified procedure showed melting depth of 0.8∼1.3mm and heat affected zone of 2.8∼3.4mm length. No crack and lack of penetration were observed. And the results of hardness and nick-break tests satisfied code requirements. The area crossed by fillet and groove welding line was found to have minimal tensile strength.

  • PDF

Microstructure and Mechanical Property in the Weld Heat-affected Zone of V-added Austenitic Fe-Mn-Al-C Low Density Steels

  • Moon, Joonoh;Park, Seong-Jun
    • Journal of Welding and Joining
    • /
    • v.33 no.5
    • /
    • pp.31-34
    • /
    • 2015
  • Microstructure and tensile property in the weld heat-affected zone (HAZ) of austenitic Fe-Mn-Al-C low density steels were investigated through transmission electron microscopy analysis and tensile tests. The HAZ samples were prepared using Gleeble simulation with high heat input welding condition of 300 kJ/cm, and the HAZ peak temperature of $1200^{\circ}C$ was determined from differential scanning calorimetry (DSC) test. The strain- stress responses of base steels showed that the addition of V improved the tensile and yield strength by grain refinement and precipitation strengthening. Tensile strength and elongation decreased in the weld HAZ as compared to the base steel, due to grain growth, while V-added steel had a higher HAZ strength as compared than V-free steel.

A Novel Tensile Specimen and Test Machine for Mechanical Properties of MEMS Materials (MEMS 소재의 기계적 특성 평가를 위한 인장형 시편 및 시험기 제작)

  • Park, Jun-Hyub;Kim, Chung-Youb;Lee, Chang-Seun;Choa, Sung-Hoon;Song, Ji-Ho
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.258-263
    • /
    • 2004
  • Mechanical property evaluation of micrometer-sized structures is necessary to help design reliable microelectromechanical systems(MEMS) devices. Most material properties are known to exhibit dependence on specimen size and such properties of microscale structures are not well characterized. This paper describes techniques developed for tensile testing of materials used in MEMS. Epi-polycrystalline silicon is currently the most widely used material, and its tensile strength has been measured as 1.52GPa. We have developed an uniaxial testing machine for testing microscale specimen using electro-magnetic actuator. The field magnet and the moving coil taken from an audio-speaker were utilized as the components of the actuator. Structure of specimen was designed and manufactured for easy handling and alignment. In addition to the static tensile tests, new techniques and procedures for measuring strength are described.

  • PDF

Proof tests of REBCO coated conductor tapes for device applications through electromechanical property assessment at 77 K

  • Mark Angelo Diaz;Michael De Leon;Hyung-Seop Shin;Ho-Sang Jung;Jaehun Lee
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.3
    • /
    • pp.34-37
    • /
    • 2023
  • The practical application of REBCO coated conductor (CC) tapes, vital for energy transmission (e.g., cable application) and high-field magnets (e.g., coil application), necessitates efficient and simple quality assessment procedures. This study introduces a systematic approach to assess the electromechanical properties of REBCO CC tapes under 77 K and self-field conditions. The approach involves customized tensile and bending tests that clarify the critical current (Ic) response of the CC tapes under mechanical loads induced by tension and bending. This study measures the retained Ic values of commercially available GdBCO CC tapes under 250 MPa tensile stress and 40 mm bending diameter. Through experimentation, the study demonstrates the resilience of these tapes and their suitability for applications. By presenting a simplified stress-based analysis and a bending test of the tapes, the study contributes to effective quality assessment methods for the development of practical superconducting products.

Dog bone shaped specimen testing method to evaluate tensile strength of rock materials

  • Komurlu, Eren;Kesimal, Ayhan;Demir, Aysegul Durmus
    • Geomechanics and Engineering
    • /
    • v.12 no.6
    • /
    • pp.883-898
    • /
    • 2017
  • To eliminate the holding and gluing problems making the direct tensile strength test hard to be applied, a new method of testing specimens prepared using lathe machine to make the dog bone shape is assessed whether it could be applied to determine accurate direct tensile strength values of rock materials. A series of numerical modelling analyses was performed using finite element method to investigate the effect of different specimen and steel holder geometries. In addition to numerical modelling study, a series of direct tensile strength tests was performed on three different groups of rock materials and a rock-like cemented material to compare the results with those obtained from the finite element analyses. A proper physical property of the lathed specimens was suggested and ideal failure of the dog bone shaped specimens was determined according to the results obtained from this study.