• Title/Summary/Keyword: tensile properties

Search Result 5,836, Processing Time 0.039 seconds

Fracture Pattern and Physical Property of the Granodiorite for Stone Resources in the Nangsan Area (낭산일대에 분포하는 화강섬록암 암석자원의 열극체계 및 물리적 특성)

  • Yun, Hyun-Soo;Hong, Sei-Sun;Park, Deok-Won
    • The Journal of the Petrological Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.144-161
    • /
    • 2007
  • The studied Nangsan area is widely covered by the Jurassic biotite granodiorite, which is mainly light grey in color and medium-grained in texture. Results of the regional fracture pattern analysis for the granodiorite body are as follows. Strike directions of fractures show three dominant sets in terms of frequency order. The sets are in an order of a (1) $N80^{\circ}{\sim}90^{\circ}E$ (1st-order)>(2) $N70^{\circ}{\sim}80^{\circ}E$ (2nd-order)>(3) $NS{\sim}N10^{\circ}E$ (3rd-order). Spacings of the fractures are mostly predominant in less than 200 cm. Therefore, the granodiorite of the area has more potential for non-dimensional stones than dimension ones. And orientations of vertical quarrying planes can be also divided into two groups in terms of frequency $N14^{\circ}W{\sim}N16^{\circ}E$ (1st-order) and (2) $N78^{\circ}E{\sim}N88^{\circ}E$ (2nd-order). The orientations of the two groups are more or less different from those of the regional fracture patterns. These can be mainly attributed to the preferred orientations of microcrack developed in the quarries. Of physical properties, specific gravity, absorption ratio, porosity, compressive strength, tensile strength and abrasive hardness are 2.65, 0.28%, 0.73%, $1,628kg/cm^2,\;100kg/cm^2$ and 31, respectively. Contrary to the porosity, both granites of the Nangsan and Sogrisan areas show almost similar values of the abrasive hardness. These can be explained by the differences of Qz+Af modes, which can be regarded as an index for abrasive resistance. Meanwhile, it is anticipated that comprehensive understanding of the orientations of vertical quarrying planes and characteristics of various physical properties will be utilized as an important information for stone resources.

Studies on Influence of Water-Proof Agents on the Properties of Mortar (방수제(防水劑)가 모르터의 제성질(諸性質)에 미치는 영향(影響)에 관(關)한 연구(硏究))

  • Kim, Seong Wan;Sung, Chan Yong;Kim, Sun Young
    • Korean Journal of Agricultural Science
    • /
    • v.14 no.2
    • /
    • pp.358-372
    • /
    • 1987
  • This study was performed to obtain data which can be applied to use of water-proof mortars. The data was based on the properties of water-proof mortars depending upon various mixing ratios to compare those of cement mortar. The water-proof agents used were retard and accelerate type which are being used as mortar structures. The water-proof agents, mixing ratios of cement to fine aggregate were 1:1, 1:2, 1:3 and 1:4. The results obtained were summarised as follows; 1. The results of flow test, water-cement ratio was increased with the increasing of mixing ratio. 2. The permeability were increased in poorer mixing ratio and higher water pressure. 3. The bulk density was decreased with the increasing of mixing ratio, and compressive and tensile strength were increased with increasing of the bulk density. 4. At 1:1 mixing ratio, the highest strengths were showed and strengths were decreased with the increasing of mixing ratio. 5. The absorption rates were increased in- poorer mixing ratio 6. The correlation between W/C, permeability, bulk density, compressive strength and absorption rate were highly significant as a straight line, respectively.

  • PDF

Biaxial Strain Analysis of Various Fixation Models in Porcine Aortic and Pulmonary Valves (돼지 대동맥 판막과 폐동맥 판막의 고정 방법에 따른 양방향 압력-신장도의 비교분석)

  • Cho, Sung-Kyu;Kim, Yong-Jin;Kim, Soo-Hwan;Choi, Seung-Hwa
    • Journal of Chest Surgery
    • /
    • v.42 no.5
    • /
    • pp.566-575
    • /
    • 2009
  • Background: The function of a bioprosthetic heart valve is determined largely by the material properties of the valve cusps. The uniaxial tensile test has been studied extensively. This type of testing, however, does not replicate the natural biaxial loading condition. The objective of the present study was to investigate the regional variability of the biaxial strain versus pressure relationship based on the types of fixation liquid models. Material and Method: Porcine aortic valves and pulmonary valves were assigned to three groups: the untreated fresh group, the fixed with glutaraldehyde (GA) group, and the glutaraldehyde with solvent (e.g., ethanol) group. For each group we measured the radial and circumferential stretch characteristics of the valve as a function of pressure change. Result: Radial direction elasticity of porcine aortic and pulmonary valves were better than circumferential direction elasticity in fresh, GA fixed and GA+solvent fixed groups (p=0.00). Radial and circumferential direction elasticity of pulmonary valves were better than aortic valves in GA fixed, and GA+solvent fixed groups (p=0.00). Radial and circumferential direction elasticity of aortic valves were decreased after GA and GA+solvent fixation(p=0.00), except for circumferential elasticity of GA+solvent fixed valves (p=0.785). The radial (p=0.137) and circumferential (p=0.785) direction of elasticity of aortic valves were not significantly different between GA fixed. and GA+solvent fixed groups. Radial (p=0.910) and circumferential (p=0.718) direction of elasticity of pulmonary valve also showed no significant difference between GA fixed and GA+solvent fixed groups. Conclusion: When fixing porcine valves with GA, adding a solvent does not cause a loss of mechanical properties, but, does not improve elasticity either. Radial direction elasticity of porcine aortic and pulmonary valves was better than circumferential direction elasticity.

Edible Films from Protein Concentrates of Rice Wine Meal (주박 단백질 농축물로부터 가식성필름의 제조)

  • Cho, Seung-Yong;Park, Jang-Woo;Rhee, Chul
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.5
    • /
    • pp.1097-1106
    • /
    • 1998
  • Biodegradable edible films were prepared from rice protein concentrates (RPC) made from rice wine meal by alkaline extraction and isoelectric precipitation. The effect of film forming solution pH and plasticizers were studied, and cross-linkers were added to improve mechanical properties and water vapor permeabilities (WVP) of films. Films could be formed within pH $8{\sim}11$ with tensile strength (TS) of 4.3{\sim}5.7\;MPa$. Films produced under pH 11 had the highest TS (5.7 MPa) and the lowest WVP $(0.44\;ng{\cdot}m/m^2{\cdot}s{\cdot}Pa)$. Added glycerol, polyethylene glycol 200 (PEG) and its mixture (GLY:PEG=50:50) as plasticizers also affected the mechanical properties and WVP of films. TS and elongation at break (E) of films at various plasticizer levels were $5.5{\sim}1.0\;MPa$ and $3.6{\sim}24.3%$, respectively. At the same plasticizer concentration, the highest TS was observed when glycerol was used whereas the highest E was measured when mixture was used as plasticizer. WVPs of films with thickness of $60\;{\mu}m$ were $0.39{\sim}0.54\;ng{\cdot}m/m^2{\cdot}s{\cdot}Pa$. WVP of films decreased as the ratio of glycerol/PEG 200 was decreased, and WVP increased as the total amount of plasticizer added to the films increased. Film strength was improved by the addition of small amount of sodium hydrogen sulfate, succinic anhydride, ascorbic acid and citric acid, whereas TS of films containing $0.5{\sim}2.0%$ of NaCl and $CaCl_2$ were lower than those without the salts. The highest TS (6.3 MPa) was achieved with films containing 0.1% of succinic anhydride.

  • PDF

Therapeutic Effect of Hydrocolloid Membrane Containing Liriope platyphylla Extracts on the Burn Wounds of SD Rats (맥문동 혼합 하이드로콜로이드막의 제조 및 화상치료 효능평가)

  • Lee, Eun Hae;Go, Jun;Kim, Ji Eun;Koh, Eun Kyoung;Song, Sung Hwa;Sung, Ji Eun;Park, Chan Kyu;Lee, Hyeon Ah;Hwang, Dae Youn
    • Journal of Life Science
    • /
    • v.25 no.5
    • /
    • pp.523-532
    • /
    • 2015
  • A variety of previous pharmacological studies have suggested Liriope platyphylla (L. platyphylla) may exert beneficial biological effects on inflammation, diabetes, neurodegenerative disorder, obesity, constipation, and atopic dermatitis. In addition, hydrocolloid membranes (HCMs) have attracted attention in dermatological care, including in the treatment of scleroderma skin ulcers, cutaneous ulcers, permanent tympanic membrane perforations, pressure sores, and decubitus ulcers in the elderly. To investigate the therapeutic effects of HCM containing an aqueous extract of L. platyphylla (HCM-LP) on second-degree burn wounds, their physico-chemical properties were analyzed and the therapeutic effects were observed in SD rats after treatment with HCM-LP for 14 days. Significant declines in tensile strength (38.4%) and absorptiveness (46.3%), as well as an increase in surface roughness (38.1%) were detected in HCM-LP compared with that of HCM. In SD rats with burned skin, the wound diameter was shorter in the HCM-LP treated group than in the GZ group on post-surgical day 14, while the significant improvements in scar tissue reduction, epithelium regeneration, angiogenesis, and extracellular matrix deposition were observed in the HCM-LP-treated group during all experimental periods. Overall, these results suggest HCM-LP may accelerate the process of healing the burn injury skin of SD rats through the regulation of angiogenesis and connective tissue formation.

An Experimental study on the Engineering Properties of Concrete with Rice-Husk Ash (왕겨재를 혼입(混入)한 콘크리트의 공학적(工學的) 특성(特性)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Sung, Chan Yong;Yoo, Byong In;Kim, Kyung Tae;Jung, Hyun Jung;Kim, Young Ik
    • Korean Journal of Agricultural Science
    • /
    • v.24 no.2
    • /
    • pp.207-217
    • /
    • 1997
  • This study was performed to evaluate the engineering properties of rice-husk ash concrete using normal portland cement, natural aggregates and rice-husk ash. The following conclusions were drawn; 1. The unit weight was in the range of $2,216{\sim}2,325kgf/m^3$, the weights of those concrete were decreased 1~6% than that of the normal cement concrete, respectively. 2. The highest strength was achieved by 10% rice-husk ash filled rice-husk ash concrete, it was increased 8% by compressive strength, 17% by tensile strength and 18% by bending strength than that of the normal cement concrete, respectively. 3. The ultrasonic pulse velocity was in the range of 3,252~4,016 m/s, which was showed about the same compared to that of the normal cement concrete. The highest ultrasonic pulse velocity was showed by 10% rice-husk ash filled rice-husk ash concrete. 4. The dynamic modulus of elasticity was in the range of $242{\times}10^3{\sim}306{\times}10^3kgf/cm^2$, which was showed about the same compared to that of the normal cement concrete. The highest dynamic modulus was showed by 10% rice-husk ash filled rice-husk ash concrete. 5. The static modulus of elasticity was in the range of $185{\times}10^3{\sim}275{\times}10^3kgf/cm^2$, which was showed about the same compared to that of the normal cement concrete. The poisson's number of rice-husk ash concrete was less than that of the normal cement concrete. The dynamic modulus was increased approximately 11~30% than that of the static modulus. 6. The durability was increased with increase of the content of rice-husk ash. The durability was increased 1.3 times by 10% rice-husk ash, 1.6times by 20% rice-husk ash filled concrete than that of the normal cement concrete. respectively.

  • PDF

Review for Mechanisms of Gas Generation and Properties of Gas Migration in SNF (Spent Nuclear Fuel) Repository Site (사용 후 핵연료 처분장 내 가스의 발생 기작 및 거동 특성 고찰)

  • Danu Kim;Soyoung Jeon;Seon-ok Kim;Sookyun Wang;Minhee Lee
    • Economic and Environmental Geology
    • /
    • v.56 no.2
    • /
    • pp.167-183
    • /
    • 2023
  • Gases originated from the final SNF (spent nuclear fuel) disposal site are very mobile in the barrier and they may also affect the migration of radioactive nuclides generated from the SNF. Mechanisms of gas-nuclide migration in the multi-barrier and their influences on the safety of the disposal site should be understood before the construction of the final SNF disposal site. However, researches related to gas-nuclide coupled movement in the multi-barrier medium have been very little both at home and abroad. In this study, properties of gas generation and migration in the SNF disposal environment were reviewed through previous researches and their main mechanisms were summarized on the hydrogeological evolution stage of the SNF disposal site. Gas generation in the SNF disposal site was categorized into five origins such as the continuous nuclear fission of the SNS, the Cu-canister corrosion, the oxidation-reduction reaction, the microbial activity, and the inflow from the natural barriers. Migration scenarios of gas in porous medium of the multi-barrier in the SNF repository site were investigated through reviews for previous studies and several gas migration types including ① the free gas phase flow including visco-capillary two-phase flow, ② the advection and diffusion of dissolved gas in pore water, ③ dilatant two-phase flow, and ④ tensile fracture flow, were presented. Reviewed results in this study can support information to design the further research for the gas-nuclide migration in the repository site and to evaluate the safety of the Korean SNF disposal site in view points of gas migration in the multi-barrier.

Assessment of Methane Production Rate Based on Factors of Contaminated Sediments (오염퇴적물의 주요 영향인자에 따른 메탄발생 생성률 평가)

  • Dong Hyun Kim;Hyung Jun Park;Young Jun Bang;Seung Oh Lee
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.4
    • /
    • pp.45-59
    • /
    • 2023
  • The global focus on mitigating climate change has traditionally centered on carbon dioxide, but recent attention has shifted towards methane as a crucial factor in climate change adaptation. Natural settings, particularly aquatic environments such as wetlands, reservoirs, and lakes, play a significant role as sources of greenhouse gases. The accumulation of organic contaminants on the lake and reservoir beds can lead to the microbial decomposition of sedimentary material, generating greenhouse gases, notably methane, under anaerobic conditions. The escalation of methane emissions in freshwater is attributed to the growing impact of non-point sources, alterations in water bodies for diverse purposes, and the introduction of structures such as river crossings that disrupt natural flow patterns. Furthermore, the effects of climate change, including rising water temperatures and ensuing hydrological and water quality challenges, contribute to an acceleration in methane emissions into the atmosphere. Methane emissions occur through various pathways, with ebullition fluxes-where methane bubbles are formed and released from bed sediments-recognized as a major mechanism. This study employs Biochemical Methane Potential (BMP) tests to analyze and quantify the factors influencing methane gas emissions. Methane production rates are measured under diverse conditions, including temperature, substrate type (glucose), shear velocity, and sediment properties. Additionally, numerical simulations are conducted to analyze the relationship between fluid shear stress on the sand bed and methane ebullition rates. The findings reveal that biochemical factors significantly influence methane production, whereas shear velocity primarily affects methane ebullition. Sediment properties are identified as influential factors impacting both methane production and ebullition. Overall, this study establishes empirical relationships between bubble dynamics, the Weber number, and methane emissions, presenting a formula to estimate methane ebullition flux. Future research, incorporating specific conditions such as water depth, effective shear stress beneath the sediment's tensile strength, and organic matter, is expected to contribute to the development of biogeochemical and hydro-environmental impact assessment methods suitable for in-situ applications.

Structural Analysis of Concrete-filled FRP Tube Dowel Bar for Jointed Concrete Pavements (콘크리트 포장에서 FRP 튜브 다웰바의 역학적 특성 분석)

  • Park, Jun-Young;Lee, Jae-Hoon;Sohn, Dueck-Su
    • International Journal of Highway Engineering
    • /
    • v.13 no.3
    • /
    • pp.21-30
    • /
    • 2011
  • As well known, dowel bars are used to transfer traffic load acting on one edge to another edge of concrete slab in concrete pavement system. The dowel bars widely used in South Korea are round shape steel bar and they shows satisfactory performance under bending stress which is developed by repetitive traffic loading and environment loading. However, they are not invulnerable to erosion that may be caused by moisture from masonry joint or bottom of the pavement system. Especially, the erosion could rapidly progress with saline to prevent frost of snow in winter time. The problem under this circumstance is that the erosion not only drops strength of the steel dower bar but also comes with volume expansion of the steel dowel bar which can reduce load transferring efficiency of the steel dowel bar. To avoid this erosion problem in reasonable expenses, dowers bars with various materials are being developed. Fiber reinforced plastic(FRP) dower that is presented in this paper is suggested as an alternative of the steel dowel bar and it shows competitive resistance against erosion and tensile stress. The FRP dowel bar is developed in tube shape and is filled with high strength no shrinkage. Several slab thickness designs with the FRP dowel bars are performed by evaluating bearing stress between the dowel bar and concrete slab. To calculated the bearing stresses, theoretical formulation and finite element method(FEM) are utilized with material properties measured from laboratory tests. The results show that both FRP tube dowel bars with diameters of 32mm and 40mm satisfy bearing stress requirement for dowel bars. Also, with consideration that lean concrete is typical material to support concrete slab in South Korea, which means low load transfer efficiency and, therefore, low bearing stress, the FRP tube dowel bar can be used as a replacement of round shape steel bar.

Effect of Heat-Moisture Treatment of Domestic Rice Flours Containing Different Amylose Contents on Rice Noodle Quality (아밀로오스 함량이 다른 국내산 쌀가루의 수분-열처리가 쌀국수 품질에 미치는 영향)

  • Seo, Hye-In;Ryu, Bog-Mi;Kim, Chang-Soon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.11
    • /
    • pp.1597-1603
    • /
    • 2011
  • The influence of heat-moisture treatment (HMT) and substitution of rice flour containing different amylose contents on the quality characteristics of rice noodles was investigated. HMT was applied to rice flours with 21% moisture content at 100 and 105$^{\circ}C$ for 30 min. Three rice cultivars were used, including high amylose of Goami (GM) and intermediate amylose of Choochung (CC) as domestic rice flours and imported rice of Taeguk (TG) as a control. HMT and substitution of rice flour with different amylose contents affected the cooking and texture quality of rice noodles. When rice noodles were made of intermediate amylose rice flour with HMT, cooking properties improved with decreased cooking loss and cooking water turbidity and thus were closer to those of control. Especially, the hardness, adhesiveness, tensile strength, and darkness of rice noodles notably increased when HMT rice flour was used. Based on the results of quantitative descriptive analysis for selected rice noodles, the noodles made of HMT CC at 105$^{\circ}C$ (CC105) had high scores for resilience and adhesiveness and low scores for hardness compared with imported commercial rice noodles and other experimental noodles such as TG, HMT GM100, TG+CC, and TG+CC105. In conclusion, rice noodles were made of composite flours containing high amylose and intermediate amylose contents or HMT intermediate amylose content rice flour.