• Title/Summary/Keyword: tensile index

Search Result 321, Processing Time 0.03 seconds

Effect of Porosity on Quality Index of Tensile Property of A356 Casting Alloys (A356합금의 품질지수에 미치는 미소기공율의 영향)

  • Lee, Choong-Do
    • Journal of Korea Foundry Society
    • /
    • v.38 no.5
    • /
    • pp.95-102
    • /
    • 2018
  • The dependence of the tensile properties on variations in the porosity of A356 aluminium alloys was investigated in terms of the quality index of the tensile properties based upon the ultimate tensile strength and elongation as well as the variation of the strength coefficient and strain-hardening exponent with regard to a T6 treatment. The test specimens were prepared by low-pressure die-casting and a subsequent T6 treatment, and the experimental results of a tensile test carried out at room temperature were compared to the theoretical description using a modified constitutive model. The nominal value of the quality index of A356 alloys increases gradually with a lapse of the ageing time upon a T6 treatment, despite the fact that this value is temporarily decreased during the initial stage of ageing from a solutionised condition. Additionally, the quality index depends practically upon the porosity variation with a power law relationship without regard to whether in solutionised or artificial aged conditions. The theoretical description indicates that the strength coefficient directly determines the nominal level of the quality index. Moreover, the overall dependence of the quality index on the porosity variation is remarkably weakened with an increase in the tensile strain, whereas the quality index depends sensitively upon the porosity variation with a low value of the strain-hardening exponent.

An electromechanical impedance-based method for tensile force estimation and damage diagnosis of post-tensioning systems

  • Min, Jiyoung;Yun, Chung-Bang;Hong, Jung-Wuk
    • Smart Structures and Systems
    • /
    • v.17 no.1
    • /
    • pp.107-122
    • /
    • 2016
  • We propose an effective methodology using electromechanical impedance characteristics for estimating the remaining tensile force of tendons and simultaneously detecting damages of the anchorage blocks. Once one piezoelectric patch is attached on the anchor head and the other is bonded on the bearing plate, impedance responses are measured through these two patches under varying tensile force conditions. Then statistical indices are calculated from the impedances, and two types of relationship curves between the tensile force and the statistical index (TE Curve) and between statistical indices of two patches (SR Curve) are established. Those are considered as database for monitoring both the tendon and the anchorage system. If damage exists on the bearing plate, the statistical index of patch on the bearing plate would be out of bounds of the SR curve and damage can be detected. A change in the statistical index by damage is calibrated with the SR curve, and the tensile force can be estimated with the corrected index and the TE Curve. For validation of the developed methodology, experimental studies are performed on the scaled model of an anchorage system that is simplified only with 3 solid wedges, a 3-hole anchor head, and a bearing plate. Then, the methodology is applied to a real scale anchorage system that has 19 strands, wedges, an anchor head, a bearing plate, and a steel duct. It is observed that the proposed scheme gives quite accurate estimation of the remaining tensile forces. Therefore, this methodology has great potential for practical use to evaluate the remaining tensile forces and damage status in the post-tensioned structural members.

Experimental comparability between steam and normal curing methods on tensile behavior of RPC

  • Guo, Min;Gao, Ri
    • Advances in concrete construction
    • /
    • v.11 no.4
    • /
    • pp.347-356
    • /
    • 2021
  • To address the limitation of the commonly used steam curing of reactive powder concrete (SC-RPC) in engineering, a preparation technology of normal curing reactive powder concrete (NC-RPC) is proposed. In this study, an experimental comparative research on the mechanical properties of NC-RPC and SC-RPC under uniaxial tension is conducted. Under the premise of giving full play to the ultra-high performance of RPC, the paper tries to explore whether normal curing can replace steam curing. The results show that various mechanical indexes of NC-RPC (e.g., tensile strength, ultimate tensile strain, elastic modulus and deformation performance) could basically reach the mechanical index values in steam curing at 28d age, some performance is even better at a longer age. So it affirms the feasibility of normal curing. In this paper, the influence of normal curing age on the tensile properties of RPC is discussed, and the relationship between each index and age is introduced in detail. Based on the experimental data, the tensile mechanism of RPC is analyzed theoretically, and two kinds of tensile constitutive models for RPC are proposed, one is curvilinear model, and another one is polygonal line model. The validity of the two models is further verified by the test results of others.

Effect of Treatments with Flame-retardant on Flame-resistance and Tensile Strength of Paper (난연 처리가 종이의 난연성 및 인장강도에 미치는 영향)

  • Song, Han-Kyu;Lee, Myoung-Ku
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.38 no.4 s.117
    • /
    • pp.61-67
    • /
    • 2006
  • The effect of several inorganic flame-retardants such as ammonium phosphate, ammonium sulfate, aluminum hydroxide and antimony trioxide on the flame-retardant property and tensile strength of paper has been investigated. Flame-retardants were used preferably as a dry powdered mixture and added to the furnish. Both dipping and coating treatments were employed to apply flame-retardants to paper Flame-retardant paper was manufactured by treatment of $5{\sim}30%$ flame-retardants by weight of the paper on a dry weight. Paper's flame-retardant property and tensile strength were examined by comparison of char length and tensile index. As dosages of flame-retardant chemicals increased, flame-retardant property was improved but tensile index was decreased.

A Study on Comparison and Evaluation of various Strength in Seoul Granite (서울화강암의 암석강도 측정치의 비교 평가 연구)

  • 윤지선;김두영;정흥모
    • Tunnel and Underground Space
    • /
    • v.5 no.2
    • /
    • pp.144-154
    • /
    • 1995
  • In this paper, we make a study on comparison and evaluation of the seoul granite properties, which are unit weight, uniaxial compressive strength, Brazilian tensile strength and, point load strength. The typical result are as follow- 1. From the measured value of point load strength anisotropy index, the seoul granite is considered to be homogeneous. 2. There is a linear relationship between uniaxial compressive strength and size corrected point load strength index. 3. Brazilian tensile strength and size corrected point load strength index are closely tied together.

  • PDF

Manufacture of High Quality Premium Tissue from White Ledger by Bleaching, Blending with Virgin Pulp and the Addition of Softeners (백상고지로부터 표백, 버진펄프와 혼합 및 유연제 처리에 의한 고급화장지 제조)

  • 고경무;남원석;백기현
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.34 no.4
    • /
    • pp.30-36
    • /
    • 2002
  • This research was conducted to investigate the feasibility of using deinked pulp of white ledger(DIP) for the manufacture of high quality premium tissue. The three types of tissues were prepared using the softener treated bleached DIP, softener treated mixed pulp of unbleached DIP and virgin pulp, and untreated mixed pulp of bleached DIP and virgin pulp, respectively, and their tensile index. softness, and brightness were measured and compared. The bulk and surface softness increased only slightly by the addition of softener(0.2% mineral oil) into the bleached DIP. The tensile index was decreased by 15∼30%, and the brightness was the range of 86% to 87% ISO. The softener(0.2∼0.8% mineral oil or dialkyl imidazoline) treatment of mixed pulp of unbleached DIP and virgin pulp Improved the bulk and surface of tissue considerably. However, the brightness was low as 85% ISO or below. Although the softness of the tissue made from bleached DIP blended with virgin pulp was the lowest among three types of tissues evaluated, its tensile index was the highest and brightness was 87∼88% ISO. Based on the results, it may be predicted that the bleached DIP blended with virgin pulp is the best raw material for the manufacture of high quality premium tissue if softener treatment is applied to mixed pulp, because the softness can be improved by the addition of softener. In general, the softness of tissue was improved with the increase in the amount of softener: However, the tensile index inversely proportional to the amount of softener added. Dialkyl imidazoline was more effective than mineral oil with respect to the improvement in softness, even though the loss in tensile index was severe with the treatment of dialkyl imidazoline.

Investigations on the tensile strength of high-performance fiber reinforced concrete using statistical methods

  • Ramadoss, P.;Nagamani, K.
    • Computers and Concrete
    • /
    • v.3 no.6
    • /
    • pp.389-400
    • /
    • 2006
  • This paper presents the investigations towards developing a better understanding on the contribution of steel fibers on the tensile strength of high-performance fiber reinforced concrete (HPFRC). An extensive experimentation was carried out with w/cm ratios ranging from 0.25 to 0.40 and fiber content ranging from zero to 1.5 percent with an aspect ratio of 80. For 32 concrete mixes, flexural and splitting tensile strengths were determined at 28 days. The influence of fiber content in terms of fiber reinforcing index on the flexural and splitting tensile strengths of HPFRC is presented. Based on the test results, mathematical models were developed using statistical methods to predict 28-day flexural and splitting tensile strengths of HPFRC for a wide range of w/cm ratios. The expressions, being developed with strength ratios and not with absolute values of strengths and are applicable to wide range of w/cm ratio and different sizes/shapes of specimens. Relationship between flexural and splitting tensile strengths has been developed using regression analysis and absolute variation of strength values obtained was within 3.85 percent. To examine the validity of the proposed model, the experimental results of previous researchers were compared with the values predicted by the model.

Assesment of the Decrement in Tensile Strength of an Overhead Transmission Line's Conductor in Korean Power System

  • Bae, In-Su;Kim, Dong-Min;Kim, Jin-O
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.9
    • /
    • pp.61-69
    • /
    • 2006
  • The tensile strength of an overhead transmission line's conductor in response to an aging is being assessed in this paper. It is our view that, the decrement in the conductor's tensile strength is a key index that can be used to determine a conductor's end of life and a current limits. This paper describes a probabilistic method of assessing this index for main transmission lines which are responsible for the north bound power flow in the Seoul metropolitan area. Such an assessment can be a useful guide for economic system operation.

Polymerization and Preparation of Functional Ophthalmic Material Containing Carbon Nanoparticles

  • Lee, Min-Jae;Sung, A-Young
    • Korean Journal of Materials Research
    • /
    • v.28 no.8
    • /
    • pp.452-458
    • /
    • 2018
  • This research is conducted to create a functional hydrogel ophthalmic lens containing nanoparticles. Carbon nanoparticles and PEGMEMA are used as additives for the basic combination of HEMA, MA, and MMA, and the materials are copolymerized with EGDMA as the cross-linking agent and AIBN as the thermal initiator. The hydrogel lens is produced using a cast-mold method, and the materials are thermally polymerized at $100^{\circ}C$ for an hour. The polymerized lens sample is hydrated in a 0.9 % saline solution for 24 hours before the optical and physical characteristics of the lens are measured. The refractive index, water content, contact angle, light transmittance, and tensile strength are measured to evaluate the physical and optical characteristics of the hydrogel lens. The refractive index, water content, contact angle, UV-B light transmittance, UV-A light transmittance, visible light transmittance, tensile strength and breaking strength of the hydrogel lens polymer are 1.4019~1.4281, 43.05~51.18 %, $31.95{\sim}68.61^{\circ}$, 21.69~58.11 %, 35.59~84.26 %, 45.85~88.06 %, 0.1075~0.1649 kgf and 0.1520~0.2250 kgf, respectively. The results demonstrate an increase in refractive index, tensile strength and breaking strength and a decrease in contact angle and light transmittance. Furthermore, the visible light transmissibility is significantly increased at PEG 10 %. It is clear that this material can be used for high-performance ophthalmic lenses with wettability, ultraviolet ray blocking effect, and tensile strength.

Advanced Indentation Studies on the Effects of Hydrogen Attack on Tensile Property Degradation of Heat-Resistant Steel Heat-Affected Zones

  • Choi, Yeol;Jang, Jae-il;Lee, Yun-Hee;Kwon, Dongil;Kim, Jeong-Tae
    • Corrosion Science and Technology
    • /
    • v.2 no.6
    • /
    • pp.266-271
    • /
    • 2003
  • Safety diagnosis of various structural components and facilities is indispensable for preventing catastrophic failure of material by time-dependent and environment accelerating degradation. Also, this diagnosis of operating components should be done periodically for safe maintenance and economical repair. However, conventional standard methods for mechanical properties have the problems of bulky specimen, destructive procedure and complex procedure of specimen sampling. So, a non-destructive and simple mechanical testing method using small specimen is needed. Therefore, an advanced indentation technique was developed as a potential method for non-destructive testing of in-field structures. This technique measures indentation load-depth curve during indentation and analyzes the mechanical properties related to deformation such as yield strength, tensile strength and work-hardening index. In this paper, we characterized the tensile properties including yield and tensile strengths of the V-modified Cr-Mo steels in petro-chemical and thermo-electrical plants. And also, the effects of hydrogen-assisted degradation of the V-modified Cr-Mo steels were analyzed in terms of work-hardening index and yield ratio.