• 제목/요약/키워드: tensile crack

검색결과 1,197건 처리시간 0.03초

Effect of medium coarse aggregate on fracture properties of ultra high strength concrete

  • Karthick, B.;Muthuraj, M.P.
    • Structural Engineering and Mechanics
    • /
    • 제77권1호
    • /
    • pp.103-114
    • /
    • 2021
  • Ultra high strength concrete (UHSC) originally proposed by Richards and Cheyrezy (1995) composed of cement, silica fume, quartz sand, quartz powder, steel fibers, superplasticizer etc. Later, other ingredients such as fly ash, GGBS, metakaoline, copper slag, fine aggregate of different sizes have been added to original UHSC. In the present investigation, the combined effect of coarse aggregate (6mm - 10mm) and steel fibers (0.50%, 1.0% and 1.5%) has been studied on UHSC mixes to evaluate mechanical and fracture properties. Compressive strength, split tensile strength and modulus of elasticity were determined for the three UHSC mixes. Size dependent fracture energy was evaluated by using RILEM work of fracture and size independent fracture energy was evaluated by using (i) RILEM work of fracture with tail correction to load - deflection plot (ii) boundary effect method. The constitutive relationship between the residual stress carrying capacity (σ) and the corresponding crack opening (w) has been constructed in an inverse manner based on the concept of a non-linear hinge from the load-crack mouth opening plots of notched three-point bend beams. It was found that (i) the size independent fracture energy obtained by using above two approaches yielded similar value and (ii) tensile stress increases with the increase of % of fibers. These two fracture properties will be very much useful for the analysis of cracked concrete structural components.

Flexural behavior of ultra high performance concrete beams reinforced with high strength steel

  • Wang, Jun-Yan;Gu, Jin-Ben;Liu, Chao;Huang, Yu-Hao;Xiao, Ru-Cheng;Ma, Biao
    • Structural Engineering and Mechanics
    • /
    • 제81권5호
    • /
    • pp.539-550
    • /
    • 2022
  • A detailed experimental program was conducted to investigate the flexural behavior of ultra high performance concrete (UHPC) beams reinforced with high strength steel (HSS) rebars with a specified yield strength of 600 MPa via direct tensile test and monotonic four-point bending test. First, two sets of direct tensile test specimens, with the same reinforcement ratio but different yield strength of reinforcement, were fabricated and tested. Subsequently, six simply supported beams, including two plain UHPC beams and four reinforced UHPC beams, were prepared and tested under four-point bending load. The results showed that the balanced-reinforced UHPC beams reinforced with HSS rebars could improve the ultimate load-bearing capacity, deformation capacity, ductility properties, etc. more effectively owing to interaction between high strength of HSS rebar and strain-hardening characteristic of UHPC. In addition, the UHPC with steel rebars kept strain compatibility prior to the yielding of the steel rebar, further satisfied the plane-section assumption. Most importantly, the crack pattern of the UHPC beam reinforced with HSS rebars was prone to transform from single main crack failure corresponding to the normal-strength steel, to multiple main cracks failure under the condition of balanced-reinforced failure, which validated by the conclusion of direct tensile tests cooperated with acoustic emission (AE) source locating technique as well.

영광원자력 배관소재의 재료물성치 평가 (III) -주증기계통- (Evaluation of Material Properties for Yonggwang Nuclear Piping Systems (III) - Main Steam System -)

  • 김영진;석창성;김종욱
    • 대한기계학회논문집
    • /
    • 제19권6호
    • /
    • pp.1460-1468
    • /
    • 1995
  • The objective of this paper is to evaluate the material properties of SA106 Gr. C carbon steel and its associated weld manufactured for main steam system of Yonggwang 3,4 nuclear generating stations. A total of 43 tensile and 35 fracture toughness tests were performed and the effects of various parameters such as pipe size, crack plane orientation, test temperature, welding on material properties were discussed. Test results show that the effects of crack plane orientation, test temperature, and welding on fracture toughness were significant while the effects of pipe size, specimen orientation and test temperature on tensile properties were negligible. Especially the dependence of J-R curves on the crack plane orientation appears to be the characteristics of carbon steel.

탄소성파괴인성과 파괴변형률에 관한 연구 (A Study on the Relations Between Fracture Strain and Elastic-Plastic Fracture Toughness)

  • 최재강;임만배
    • 한국안전학회지
    • /
    • 제13권4호
    • /
    • pp.25-33
    • /
    • 1998
  • In this study, under large scale yielding conditions crack propagation is found to governed by parameters based on the J-integral or on the crack opening displacement. But initiation of crack propagation of ductile material seems to be controlled by just on parameter that is the strain. The relationship between the critical value of J-integral and the local fracture strain in uniaxial tensile test in the region of maximum reduction in area. Therefore, the fundamental theoretical equation by the proposed elastic-plastic fracture toughness and the local fracture strain has a merit, in comparison with the ASTM method, which can measure by using the load-displacement curve and the specimens in tensile test.

  • PDF

경량골재 콘크리트의 수축 저감효과에 관한 적용성 연구 (A Study on the Applicability of Shrinkage Reduction Effect of Light-weight Aggregate Concrete)

  • 임상준;방창준;박종혁
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2011년도 추계 학술논문 발표대회
    • /
    • pp.175-176
    • /
    • 2011
  • Applying previous studies performed in the moisture transportation characteristics and shrinkage of lightweight concrete application of shrinkage reduction is to discuss. Applicability of shrinkage reduction effect of lightweight concrete applies for the analysis of PSC girder bridge beam placed on the construction site. Stress of the concrete bridge deck, rebar quantity is calculated by effective elastic modulus method and crack risk is assessed by moisture transport and differential shrinkage analysis. After approximately 10 days maximum tensile stress occurs 6MPa, similar to the case of normal concrete, a maximum tensile stress occurs 3MPa in lightweight concrete and comparing to normal concrete stress was reduced to approximately 50%. Normal and lightweight concrete crack index, respectively, is reduced 1.6 to 1.2, 1.2 to 0.9 in surface and boundary region. Therefore, reduction in shrinkage of concrete were able to confirm reduction of crack risk.

  • PDF

반도체 칩 접착계면의 모서리 균열에 대한 경계요소 해석 (Boundary Element Analysis for Edge Cracks at the Bonding Interface of Semiconductor Chip)

  • 이상순
    • 마이크로전자및패키징학회지
    • /
    • 제8권3호
    • /
    • pp.25-30
    • /
    • 2001
  • 반도체 칩과 얇은 접착제충의 계면에 존재하는 모서리 균열에 횡방향 인장변형률이 작용하는 경우에 대해 응력확대계수를 조사하고 있다. 이러한 균열들은 자유 경계면 부근에 존재하는 응력 특이성으로 인해 발생할 수 있다. 계면 응력상태를 해석하기 위해서 경계요소법이 사용되고 있다. 복합 응력확대계수의 크기는 균열의 크기에 의존하지만, 균열이 커지면 일정한 값에 수렴한다. 횡방향 인장변형률이 임계값에 도달하면, 계면 균열은 빠르게 전파되리라고 예상된다.

  • PDF

연강의 열처리 온도와 두께 변화에 따른 피로균열성장거동에 관한 연구 (A Study on the Fatigue Crack Propagation Behavior by the Variation of Heat Treatment Temperature and Thickness in Mild Steel)

  • 오환교
    • 한국안전학회지
    • /
    • 제15권3호
    • /
    • pp.40-44
    • /
    • 2000
  • The fatigue and tensile test were carried out with Mild steel using the Dump Frame of commercial car. The specimens were heat-treated at $810^{\circ}C$ and $930^{\circ}C$ and worked 4.5, 6.0, 8.0mm thickness in order to look over the mechanical properties and fatigue life by heat treatment and thickness from the tensile test result, the yield strength of the heat treated specimens was increased about 35% more than that of the non-heat treated specimen. The fatigue life of non-heated specimen was decreased 15% but that of heat treated specimens at $870^{\circ}C$ and $930^{\circ}C$ were decreased 16.38% and 13.16% respectably according to increasing the thickness from 4.5 to 8.0mm.

  • PDF

오스템퍼 회주철의 파괴강도 특성에 관한 연구 (A Study on Characteristics of Strength and Fracture of Austempered Graphite Cast Iron)

  • 이하성;강동명;이영상
    • 한국안전학회지
    • /
    • 제11권1호
    • /
    • pp.3-10
    • /
    • 1996
  • The mechanical properties and fatigue crack growth rate fracture toughness of permanent mould cast austempered gray cast iron(AGI) were compared to those of sand cast AGI. Specimens prepared for tensile, impact and fatigue test were austenitized at $900^{\circ}C$ and austempered at $270^{\circ}C$, $320^{\circ}C$, $370^{\circ}C$ and $420^{\circ}C$ for 1 hour. The strength, impact and fatigue crack propagation behavior of permanent mold cast AGI were found to be superior to those of sand cast AGI. Maximum values in tensile strength, BHN, Charpy impact energy, were obtained at the austempering temperature of $270^{\circ}C$. Samely, the slowest fatigue crack growth rate was appeared at the austempering temperature of $270^{\circ}C$. But ductility of AGI was not improved by permanent mould casting.

  • PDF

Interaction between two neighboring tunnel using PFC2D

  • Sarfarazi, V.;Haeri, Hadi;Safavi, Salman;Marji, Mohammad Fatehi;Zhu, Zheming
    • Structural Engineering and Mechanics
    • /
    • 제71권1호
    • /
    • pp.77-87
    • /
    • 2019
  • In this paper, the interaction between two neighboring tunnel has been investigated using PFC2D. For this purpose, firstly calibration of PFC was performed using Brazilian experimental test. Secondly, various configuration of two neighboring tunnel was prepared and tested by biaxial test. The maximum and minimum principle stresses were 0.2 and 30 MPa respectively. The modeling results show that in most cases, the tensile cracks are dominant mode of cracks that occurred in the model. With increasing the diameter of internal circle, number of cracks decreases in rock pillar also number of total cracks decreases in the model. The rock pillar was heavily broken when its width was too small. In fixed quarter size of tunnel, the crack initiation stress decreases with increasing the central tunnel diameter. In fixed central tunnel size, the crack initiation stress decreases with increasing the quarter size of tunnel.

하이브리드 강섬유로 보강된 UHPC의 파괴거동 (Fracture Behavior of UHPC Reinforced with Hybrid Steel Fibers)

  • 임우영;홍성걸
    • 콘크리트학회논문집
    • /
    • 제28권2호
    • /
    • pp.223-234
    • /
    • 2016
  • 이 연구에서는 노치 도입 인장시편을 사용하여 직접인장강도 실험을 통해 UHPC의 파괴거동을 살펴보고, 강섬유 혼입률에 따른 UHPC의 초기균열강도와 인장강도를 제안하였다. 실험결과 UHPC와 초기균열강도와 인장강도, 그리고 파괴에너지 등은 강섬유 혼입률이 증가할수록 증가하는 것으로 나타났다. 균열선단에서의 응집응력은 Barenblatt의 가정을 사용하여 결정되었으며, 이를 토대로 변형경화 현상이 발생하는 강섬유 혼입률이 1% 이상인 UHPC의 최대응집응력을 예측할 수 있는 간편식을 제안하였다. 인장강도는 강섬유 혼입률과 압축강도의 함수로 제안되었으며, 파괴에너지는 인장강도의 함수로 제안되었다. 제안된 간편식들은 실험값과 비교적 잘 일치하였으며, 향후 압축강도가 140~170 MPa이고, 강섬유 혼입률이 2% 이하인 UHPC에 적용가능 할 것으로 판단된다.