• Title/Summary/Keyword: tendon model

Search Result 138, Processing Time 0.026 seconds

Quantitative damage identification in tendon anchorage via PZT interface-based impedance monitoring technique

  • Huynh, Thanh-Canh;Kim, Jeong-Tae
    • Smart Structures and Systems
    • /
    • v.20 no.2
    • /
    • pp.181-195
    • /
    • 2017
  • In this study, the severity of damage in tendon anchorage caused by the loss of tendon forces is quantitatively identified by using the PZT interface-based impedance monitoring technique. Firstly, a 2-DOF impedance model is newly designed to represent coupled dynamic responses of PZT interface-host structure. Secondly, the 2-DOF impedance model is adopted for the tendon anchorage system. A prototype of PZT interface is designed for the impedance monitoring. Then impedance signatures are experimentally measured from a laboratory-scale tendon anchorage structure with various tendon forces. Finally, damage severities of the tendon anchorage induced by the variation of tendon forces are quantitatively identified from the phase-by-phase model updating process, from which the change in impedance signatures is correlated to the change in structural properties.

Parameter Estimation of a Friction Model for a Tendon-sheath Mechanism (텐던 구동 시스템의 마찰 모델 파라미터 추정)

  • Jeoung, Haeseong;Lee, Jeongjun;Kim, Namwook
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.2
    • /
    • pp.190-196
    • /
    • 2020
  • Mechanical systems using tendon-driven actuators have been widely used for bionic robot arms because not only the tendon based actuating system enables the design of robot arm to be very efficient, but also the system is very similar to the mechanism of the human body's operation. The tendon-driven actuator, however, has a drawback caused by the friction force of the sheath. Controlling the system without considering the friction force between the sheath and the tendon could result in a failure to achieve the desired dynamic behaviors. In this study, a mathematical model was introduced to determine the friction force that is changed according to the geometrical pathway of the tendon-sheath, and the model parameters for the friction model were estimated by analyzing the data obtained from dedicated tests designed for evaluating the friction forces. Based on the results, it is possible to appropriately predict the friction force by using the information on the pathway of the tendon.

Unbonded tendon model considering time-dependent behavior (시간의존적 거동을 고려한 비부착 텐던 모델)

  • Park, Jae-Guen;Choi, Jung-Ho;Shin, Hyun-Mock
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.463-466
    • /
    • 2005
  • The purpose of this study is to develop of unbonded tendon model considering time-dependent behavior. In this paper, a numerical model for unbanded tendon is proposed based on the finite element method, which can represent straight or curved unbonded tendon behavior. This model and time-dependent material model are used to investigate the time-dependent behaviors of unbonded prestressed concrete structures. A computer program, named RCAHEST(Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of concrete structures was used. The material nonlinearities are taken into account by comprising the tension, compression, and shear models of cracked concrete and models for reinforcements and tendons in the concrete. The smeared crack approach is incorporated. It accounts for the aging, creep and shrinkage of concrete and the stress relaxation of prestressing steel. The proposed unbonded tendon model and numerical method for time-dependent behavior of unbonded prestressed concrete structures is verified by comparison with reliable experimental results.

  • PDF

Estimation of Muscle-tendon Model Parameters Based on a Numeric Optimization (최적화기법에 의한 근육-건 모델 파라미터들의 추정)

  • Nam, Yoon-Su
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.6
    • /
    • pp.122-130
    • /
    • 2009
  • The analysis of human movement requires the knowledge of the Hill type muscle parameters, the muscle-tendon and moment arm length change as a function of joint angles. However, values of a subject's muscle parameters are very difficult to identify. It turns out from a sensitivity analysis that the tendon slack length and maximum muscle force are the two critical parameters among the Hill-type muscle model. Therefore, it could be claimed that the variation of the tendon slack length and maximum muscle force from the Delp's reference data will change the muscle characteristics of a subject remarkably. A numeric optimization method to search these tendon parameters specific to a subject is proposed, and the accuracy of the developed algorithm is evaluated through a numerical simulation.

A Study of the Tendon Profile of a PSC Continuous Beam Able to Resist the Negative Bending Moment of Continuous Intergirders (거더 연속부의 부모멘트 제어에 효과적인 PSC 연속보의 텐던 배치에 관한 연구)

  • Kim, Eui Hun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.6
    • /
    • pp.617-625
    • /
    • 2021
  • The problems associated with the continuous method of a domestically improved prestressed concrete (PSC) girder and the bending moment of a continuous tendon were studied. Based on the results, a continuous tendon model was proposed that can resist the negative bending moment of an intergirder. This model lowers the anchorage of the continuous tendon as far as possible under the girder, and extends the tendon section arranged under the girder. This method reduces the PS's bending moment in the middle of the span, but maximizes it in the intergirder. This continuous tendon model can offer a suitable method for continuity before manufacturing a composite, which requires a higher design bending moment in the intergirder than in the middle of the span.

Estimation of External Prestressing Tendon Tension Using Sl Technique Based on Evolutionary Algorithm (진화 알고리즘기반의 SI기법을 이용한 외부 프리스트레싱으로 보강된 텐던의 장력 추정)

  • Jang, Han-Teak;Noh, Myung-Hun;Lee, Sang-Youl;Park, Tae-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.156-159
    • /
    • 2008
  • This paper introduces a remained tensile force estimation method using SI technique based on evolutionary algorithm for externally prestressed tendon. This paper applies the differential evolutionary scheme to SI technique. A virtual model test using ABAQUS 3 dimensional frame model has been made for this work The virtual model is added to the tensile force(28.5kN). Two set of frequencies are extracted respectively from the virtual test and the self-coding FEM 2 dimension model. The estimating tendon tension for the FEM model is 28.31kN. It is that the error in the tendon tension is 1% through the differential evolutionary algorithm. The errors between virtual model and the self-coding FEM model are assumed as the model error.

  • PDF

A musculotendon model for supporting design and analysis of tendon transfers in the hand

  • Yoon, I.M.
    • Proceedings of the ESK Conference
    • /
    • 1992.10a
    • /
    • pp.54-62
    • /
    • 1992
  • This work has been directed at studying and developing a prototype Computer Aided Design(CAD) tool to be used for planning tendon paths in hand reconstructive surgery. The application of CAD to rehabilitative surgery of the hand is a new field of endeavor. There are currently no existing systems designed to assist the orthopedic surgeon in planning these complex peocedures. Additionally, orthopedic surgeons are not trained in mechanics, kinematics, math modeling, or the use of computers. It was also our intent to study the mechanisms and the efficacy of the application of CAD techniques to this important aspect of hand surgery. The following advances are reported here: Interactive 3D tendon path definition tools., Software to calculate tendon excursion from an arbitrary tendon path crossing any number of joints., A model to interactively compute and display the foirces in muscle and tendon., A workstation environment to help surgeons evaluate the consequences of a simulated tendon transfer operation when a tendon is lengthened, rerouted, or reattached in a mew location., It also has been one of the primary concerns in this work that an interactive graphical surgical workstation must present a natural, user-friendly environment to the orthopedic durgeon user. The surgical workstation must ultimately aid the surgeon in helping his patient or in doing his work more efficiently or more reliably.

  • PDF

Proposal on the Prediction Equation of Ultimate stress of External Tendon for the Prestressed Concrete Beams with External Tendons (외부 PSC 보에서 외부강선의 극한 응력 예측식 제안)

  • Yoo, Sung-Won;Ha, Heon-Jae
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.5
    • /
    • pp.44-53
    • /
    • 2010
  • Recently, the external prestressed concrete structures are increasingly being built. The mechanical behavior of prestressed concrete beams with unbonded tendon is different from that of normal bonded PSC beams in that the increment of tendon stress was derived by whole member behavior. By this reason, the ultimate stress of external tendon is smaller than that of bonded tendon or internal unbonded tendon. However, in the domestic and abroad code, the equation of ultimate stress of external tendon is not suggested yet, and the equation of ultimate stress of internal unbonded tendon is used instead of that of external tendon. Therefore, in this paper, after effective variables of ultimate stress of external tendon were analyzed, the analytical equation of ultimate stress of external tendon was proposed. And the reasonable coefficients were proposed by statistical work of test results of 25 beam with external tendon. Finally, the practical proposed equation of ultimate stress of external tendon was proposed with analytical and statistical model. The equation of ACI-318 and AASHTO 1994 were not matched with test results and had no correlations, and the proposed equation was well matched with test results. So the proposed equation in this paper will be a effective basis for the evaluation of external tendons in analysis and design.

Effect of prestressing on the first flexural natural frequency of beams

  • Jaiswal, O.R.
    • Structural Engineering and Mechanics
    • /
    • v.28 no.5
    • /
    • pp.515-524
    • /
    • 2008
  • In this paper the effect of prestressing force on the first flexural natural frequency of beams is studied. Finite element technique is used to model the beam-tendon system, and the prestressing force is applied in the form of initial tension in the tendon. It is shown that the effect of prestressing force on the first natural frequency depends on bonded and unbonded nature of the tendon, and also on the eccentricity of tendon. For the beams with bonded tendon, the prestressing force does not have any appreciable effect on the first flexural natural frequency. However, for the beams with unbonded tendon, the first natural frequency significantly changes with the prestressing force and eccentricity of the tendon. If the eccentricity of tendon is small, then the first natural frequency decreases with the prestressing force and if the eccentricity is large, then the first flexural natural frequency increases with the prestressing force. Results of the present study clearly indicate that the first natural frequency can not be used as an easy indicator for detecting the loss of prestressing force, as has been attempted in some of the past studies.

Nonlinear analysis of prestressed concrete structures considering slip behavior of tendons

  • Kwak, Hyo-Gyoung;Kim, Jae-Hong;Kim, Sun-Hoon
    • Computers and Concrete
    • /
    • v.3 no.1
    • /
    • pp.43-64
    • /
    • 2006
  • A tendon model that can effectively be used in finite element analyses of prestressed concrete (PSC) structures with bonded tendons is proposed on the basis of the bond characteristics between a tendon and its surrounding concrete. Since tensile forces between adjacent cracks are transmitted from a tendon to concrete by bond forces, the constitutive law of a bonded tendon stiffened by grouting is different from that of a bare tendon. Accordingly, the apparent yield stress of an embedded tendon is determined from the bond-slip relationship. The definition of the multi-linear average stress-strain relationship is then obtained through a linear interpolation of the stress difference at the post-yielding stage. Unlike in the case of a bonded tendon, on the other hand, a stress increase beyond the effective prestress in an unbonded tendon is not section-dependent but member-dependent. The tendon stress unequivocally represents a uniform distribution along the length when the friction loss is excluded. Thus, using a strain reduction factor, the modified stress-strain curve of an unbonded tendon is derived by successive iterations. The validity of the proposed two tendon models is verified through correlation studies between analytical and experimental results for PSC beams and slabs.