• Title/Summary/Keyword: temporal transfer

Search Result 163, Processing Time 0.031 seconds

Reconstruction for Soft Tissue Defect of Dorsum of Hand or Foot with Free Temporal Fascial Flap (유리 측두 근막판을 이용한 수배부 및 족배부 연부조직 결손의 재건)

  • Lee, Byoung Ho;Nam, Yun Kwan;Ju, Pyong
    • Archives of Reconstructive Microsurgery
    • /
    • v.9 no.1
    • /
    • pp.37-43
    • /
    • 2000
  • Vascularized tissue coverage is necessary for treatment of soft tissue defect with bone and tendon exposure on hand and foot dorsum, which cannot be successfully covered with simple skin graft or local flap. The temporal fascia is one of the most ideal donor for coverage of soft tissue defect of dorsum of hand or foot in term of ultra-thin, pliable and highly vascular tissue. Also, this flap offers the advantage of a well-concealed donor site in the hair-bearing scalp and smooth tendon gliding. We have experienced 11 cases of reconstruction for soft tissue defect in the hand or foot using temporal fascial flap with skin graft. All cases survived completely and we could gain satisfactory functional results. There were no specific complications except one donor site alopecia We think that the free temporal fascial flap coverage is a highly reliable method for soft tissue defect in hand and foot dorsum. However, the potential pitfalls is secondary alopecia and requirement of skin graft after its transfer.

  • PDF

Atmospheric Correction Problems with Multi-Temporal High Spatial Resolution Images from Different Satellite Sensors

  • Lee, Hwa-Seon;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.4
    • /
    • pp.321-330
    • /
    • 2015
  • Atmospheric correction is an essential part in time-series analysis on biophysical parameters of surface features. In this study, we tried to examine possible problems in atmospheric correction of multitemporal High Spatial Resolution (HSR) images obtained from two different sensor systems. Three KOMPSAT-2 and two IKONOS-2 multispectral images were used. Three atmospheric correction methods were applied to derive surface reflectance: (1) Radiative Transfer (RT) - based absolute atmospheric correction method, (2) the Dark Object Subtraction (DOS) method, and (3) the Cosine Of the Uun zeniTh angle (COST) method. Atmospheric correction results were evaluated by comparing spectral reflectance values extracted from invariant targets and vegetation cover types. In overall, multi-temporal reflectance from five images obtained from January to December did not show consistent pattern in invariant targets and did not follow a typical profile of vegetation growth in forests and rice field. The multi-temporal reflectance values were different by sensor type and atmospheric correction methods. The inconsistent atmospheric correction results from these multi-temporal HSR images may be explained by several factors including unstable radiometric calibration coefficients for each sensor and wide range of sun and sensor geometry with the off-nadir viewing HSR images.

An Experimental Study on Convection Heat Transfer in an Oscillating Flow of a Heater Tube for Stirling Cycle Machines (스터링 사이클기기용 가열기 원관내부 왕복유동에서의 열전달에 관한 실험적 연구)

  • 강병하;이건태;이춘식;이재헌
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1547-1555
    • /
    • 1993
  • An experimental study on convection heat transfer characteristics from a heated tube to an oscillating flow has been carried out, . This problem is of particular interest in the design of heat exchangers in Stirling cycle machines. Experimental system has been developed to measure temporal variations of temperature inside a heater tube during oscillating modes in a Stirling cycle machine. The dependence of temperature distributions and heat transfer rates on the oscillating frequency as well as the swept volume ratio and the mean pressure of a Stirling cycle machine is investigated in detail. The experimental results indicate that the measured temporal variations of temperature become nearly sinusoidal. The amplitude of temperature variation in the core of the tube is much more substantial than that near the tube wall, whereas the reverse is true for pulsating flows. It is also found that the heat transfer rate is increased significantly as the oscillating frequency or oscillating amplitude or the mean pressure in a tube is increased.

Transfer Functional Modeling Using Soil Moisture Measurements at a Steep Forest Hillslope (산지사면의 실측토양수분을 이용한 전이함수 모형의 적용)

  • Kim, Sang-Hyun
    • Journal of Environmental Science International
    • /
    • v.22 no.4
    • /
    • pp.415-424
    • /
    • 2013
  • In this paper, time series of soil moisture were measured for a steep forest hillslope to model and understand distinct hydrological behaviours along two different transects. The transfer function analysis was presented to characterize temporal response patterns of soil moisture for rainfall events. The rainfall is a main driver of soil moisture variation, and its stochastic characteristic was properly treated prior to the transfer function delineation between rainfall and soil moisture measurements. Using field measurements for two transects during the rainy season in 2007 obtained from the Bumrunsa hillslope located in the Sulmachun watershed, a systematic transfer functional modeling was performed to configure the relationships between rainfall and soil moisture responses. The analysis indicated the spatial variation pattern of hillslope hydrological processes, which can be explained by the relative contribution of vertical, lateral and return flows and the impact of transect topography.

Modulation Transfer Function (MTF) Measurement for KOMPSAT EOC image data Using Edge Method

  • Song J. H.;Lee D. H.
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.489-493
    • /
    • 2004
  • The Modulation Transfer Function (MTF) is commonly used to characterize the spatial quality of imaging systems. This work is the attempt to measure the MTF for KOMPSAT EOC using the non-parametric method as ground inputs. The spatial performance of the KOMPSAT EOC was analyzed by edge method while in flight using multi-temporal image data collected over test site in Seoul. The results from this work demonstrate the potential applicability of this method to estimate MTF for high spatial resolution satellite KOMPSAT-2 that is being developed to be launched in 2005.

  • PDF

Real-time Style Transfer for Video (실시간 비디오 스타일 전이 기법에 관한 연구)

  • Seo, Sang Hyun
    • Smart Media Journal
    • /
    • v.5 no.4
    • /
    • pp.63-68
    • /
    • 2016
  • Texture transfer is a method to transfer the texture of an input image into a target image, and is also used for transferring artistic style of the input image. This study presents a real-time texture transfer for generating artistic style video. In order to enhance performance, this paper proposes a parallel framework using T-shape kernel used in general texture transfer on GPU. To accelerate motion computation time which is necessarily required for maintaining temporal coherence, a multi-scaled motion field is proposed in parallel concept. Through these approach, an artistic texture transfer for video with a real-time performance is archived.

Analysis of Heat Transfer in Cooling of a Hot Plate by Planar Impingement Jet (평면충돌제트에 의한 고온 판 냉각과정의 열전달 해석)

  • Ahn, Dae-Hwan;Kim, Dong-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.1
    • /
    • pp.17-27
    • /
    • 2009
  • Water jet impingement cooling is used to remove heat from high-temperature surfaces such as hot steel plates in the steel manufacturing process (thermo-mechanical cooling process; TMCP). In those processes, uniform cooling is the most critical factor to ensure high strength steel and good quality. In this study, experiments are performed to measure the heat transfer coefficient together with the inverse heat conduction problem (IHCP) analysis for a plate cooled by planar water jet. In the inverse heat transfer analysis, spatial and temporal variations of heat transfer coefficient, with no information regarding its functional form, are determined by employing the conjugate gradient method with an adjoint problem. To estimate the two dimensional distribution of heat transfer coefficient and heat flux for planar waterjet cooling, eight thermo-couple are installed inside the plate. The results show that heat transfer coefficient is approximately uniform in the span-wise direction in the early stage of cooling. In the later stage where the forced-convection effect is important, the heat transfer coefficient becomes larger in the edge region. The surface temperature vs. heat flux characteristics are also investigated for the entire boiling regimes. In addition, the heat transfer rate for the two different plate geometries are compared at the same Reynolds number.

Turbulent Mass Transfer Around a Rotating Stepped Cylinder - Flow-Induced Corrosion - (후향 계단이 부착된 회전하는 실린더 주위 난류 물질전달 - 유동유발 부식 -)

  • Yoon, Dong-Hyeog;Yang, Kyung-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.9
    • /
    • pp.799-806
    • /
    • 2007
  • Direct Numerical Simulation was carried out to predict mass transfer in turbulent flow around a rotating stepped cylinder. This investigation is a follow-up study of DNS of turbulent flow in Nesic et al. [Corrosion, Vol. 56, No. 10, pp. 1005 - 1014] The original motivation of this work stemmed from the efforts to design a simple device which can generate flows of high turbulence intensity at low cost for corrosion researchers. Two cases were considered; Sc=1 and 10 both at Re=335. Here, Sc and Re stand for Schmidt number and Reynolds number, respectively, based on the step height and the surface speed of the cylinder upstream of the step. Main focus was placed on the correlation between turbulence and mass transfer. The spatio-temporal evolution of concentration field is discussed. The numerical results are qualitatively compared with those of the experiment conducted with a similar flow configuration.

Relationship between Music Cognitive Skills and Academic Skills (음악의 인지기술과 학습 기술과의 관계)

  • Chong, Hyun Ju
    • Journal of Music and Human Behavior
    • /
    • v.3 no.1
    • /
    • pp.63-76
    • /
    • 2006
  • Melody is defined as adding spatial dimension to the rhythm which is temporal concept. Being able to understand melodic pattern and to reproduce the pattern also requires cognitive skills. Since 1980, there has been much research on the relationship between academic skills and music cognitive skills, and how to transfer the skills learned in music work to the academic learning. The study purported to examine various research outcomes dealing with the correlational and causal relationships between musical and academic skills. The two dominating theories explaining the connection between two skills ares are "neural theory" and "near transfer theory." The theories focus mainly on the transference of spatial and temporal reasoning which are reinforced in the musical learning. The study reviewed the existing meta-analysis studies, which provided evidence for positive correlation between academic and musical skills, and significance of musical learning in academic skills. The study further examined specific skills area that musical learning is correlated, such as mathematics and reading. The research stated that among many mathematical concepts, proportional topics have the strongest correlation with musical skills. Also with reading, temporal processing also has strong relationship with auditory skills and motor skills, and further affect language and literacy ability. The study suggest that skills learned in the musical work can be transferred to other areas of learning and structured music activities may be every efficient for children for facilitating academic concepts.

  • PDF