• Title/Summary/Keyword: temporal scale

Search Result 513, Processing Time 0.029 seconds

An Overview of Pain Measurements (통증평가도구에 관한 고찰)

  • Shim, Sung-Youn;Park, Hi-Joon;Lee, Jun-Mu;Lee, Hyang-Sook
    • Korean Journal of Acupuncture
    • /
    • v.24 no.2
    • /
    • pp.77-97
    • /
    • 2007
  • Objectives : The aim of this study is to introduce pain measurement tools that are considered suitable for clinical practice and research for Korean Medicine Doctors. Methods : We analysed some widely used and also useful pain measurement tools in terms of their methods and dimensions. Results : Diagrams, scales and questions are usually used to measure pain intensity, temporal pattern, treatment including exacerbating and/or relieving factors, pain location, pain interference, pain quality, pain affect, pain duration, pain beliefs and pain history. Specific pain measurements are also available for specific conditions such as Western Ontario and McMaster Universities Osteoarthritis Index, Oswestry Disability Index and Neck Disability Index. Conclusions : Faces Pain Rating Scale, numeric rating scale, visual analogue scale, McGill Pain Questionnaire and Brief Pain Inventory and commonly used pain measurements. Specific measurements should be considered depending on research topics.

  • PDF

Three-dimensional Numerical Modeling of Water Temperature and Internal Waves in a Large Stratified Lake (대형 성층 호수의 수온과 내부파의 3차원 수치 모델링)

  • Chung, Se-Woong;Schladow, S. Geoffrey
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.4
    • /
    • pp.367-376
    • /
    • 2015
  • The momentum and kinetic turbulent energy carried by the wind to a stratified lake lead to basin-scale motions, which provide a major driving force for vertical and horizontal mixing. A three-dimensional (3D) hydrodynamic model was applied to Lake Tahoe, located between California and Nevada, USA, to simulate the dominant basin-scale internal waves in the deep lake. The results demonstrated that the model well represents the temporal and vertical variations of water temperature that allows the internal waves to be energized correctly at the basin scale. Both the model and thermistor chain (TC) data identified the presence of Kelvin modes and Poincare mode internal waves. The lake was weakly stratified during the study period, and produced large amplitude (up to 60 m) of internal oscillations after several wind events and partial upwelling near the southwestern lake. The partial upwelling and followed coastal jets could be an important feature of basin-scale internal waves because they can cause re-suspension and horizontal transport of fine particles from nearshore to offshore. The internal wave dynamics can be also associated with the distributions of water quality variables such as dissolved oxygen and nutrients in the lake. Thus, the basin-scale internal waves and horizontal circulation processes need to be accurately modeled for the correct simulation of the dissolved and particulate contaminants, and biogeochemical processes in the lake.

An Active Queue Management Algorithm Based on the Temporal Level for SVC Streaming (SVC 스트리밍을 위한 시간 계층 기반의 동적 큐 관리 알고리즘)

  • Koo, Ja-Hon;Chung, Kwang-Sue
    • Journal of KIISE:Information Networking
    • /
    • v.36 no.5
    • /
    • pp.425-436
    • /
    • 2009
  • In recent years, the user demands have increased for multimedia service of high quality over the broadband convergence network. These rising demands for high quality multimedia service led the popularization of various user terminals and large scale display equipments, which needs a variety type of QoS (Quality of Service). In order to support demands for QoS, numerous research projects are in progress both from the perspective of network as well as end system; For example, at the network perspective, QoS guaranteeing by improving of internet performance such as Active Queue Management, while at the end system perspective, SVC (Scalable Video Coding) encoding scheme to guarantee media quality. However, existing AQM algorithms have problems which do not guarantee QoS, because they did not consider the essential characteristics of video encoding schemes. In this paper, it is proposed to solve this problem by deploying the TS- AQM (Temporal Scalability Active Queue Management) which employs the differentiated packet dropping for dependency of the temporal level among the frames, based on SVC encoding characteristics by exploiting the TID (Temporal ID) field of the SVC NAL unit header. The proposed TS-AQM guarantees multimedia service quality through video decoding reliability for SVC streaming service, by differentiated packet dropping when congestion exists.

THE STUDY ON RELATIONSHIP BETWEEN PSYCHOPATHOLOGY AND NEUROLOGICAL FACTORS IN CHRONIC EPILEPTIC CHILDREN (경련 질환 환아의 정신병리와 신경학적 요인과의 관계에 대한 연구)

  • Kim, Bung-Nyun;Cho, Soo-Churl;Hwang, Yong-Seung
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.7 no.1
    • /
    • pp.92-109
    • /
    • 1996
  • The objectives of the present study were to provide comprehensive assessment of the impact of epilepsy on the psychological well-being of children with epilepsy and to identify the neurological factors associated with the psychopathology. The participant patients were recruited from the population of children and adolescent aged 7 to 16 attending the OPD of department of pediatric neurology in Seoul National University Hospital in Korea. We exclude mental retardation, pervasive developmental disorder and brain organic pathology. As control group, formal students were chosen and their sex, age, achievement, socioeconomic status were matched to patients. The first author interviewed the children and their family members and obtained the developmental history and family information. We used the following 10 scales for assessing psychological and behavioral problems in patients and their family member. The scales were standardized and their validity and reliability were confirmed before. Parent rating scales : Yale children's inventory, Disruptive behavior disorder scale, Parent's attitude to epilepsy questionnaire, Family environment scale, Symptom check-list-90 revision, Children behavior check-list. Children's self rating scales : Children's depression inventory, Spielberger's state-trait anxiety anxiety, Piers-Harris self-concept inventory and Self-administered Dependency questionnaire for Mother. The result showed the risk factors associated depression were early onset, complex partial seizure, lateralized temporal focal abnormality on EEG, Drug polypharmacy, high seizure frequency and sick factors associated anxiety were old age of patient, lateralized temporal focal abnormality EEG, Drug polypharmacy, high seizure frequency. Also the result of this present study indicated that risk factors associated oppositional defiant disorder, conduct disorder and attention deficit hyperactivity disorder were young age, male, early onset, lateral temporal EEG abnormality and high seizure frequency. According to these results, common risk factors associated psychological and behavioral problems were lateralized EEG temporal abnormality, high seizure frequency in neurological factors.

  • PDF

On Using Near-surface Remote Sensing Observation for Evaluation Gross Primary Productivity and Net Ecosystem CO2 Partitioning (근거리 원격탐사 기법을 이용한 총일차생산량 추정 및 순생태계 CO2 교환량 배분의 정확도 평가에 관하여)

  • Park, Juhan;Kang, Minseok;Cho, Sungsik;Sohn, Seungwon;Kim, Jongho;Kim, Su-Jin;Lim, Jong-Hwan;Kang, Mingu;Shim, Kyo-Moon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.251-267
    • /
    • 2021
  • Remotely sensed vegetation indices (VIs) are empirically related with gross primary productivity (GPP) in various spatio-temporal scales. The uncertainties in GPP-VI relationship increase with temporal resolution. Uncertainty also exists in the eddy covariance (EC)-based estimation of GPP, arising from the partitioning of the measured net ecosystem CO2 exchange (NEE) into GPP and ecosystem respiration (RE). For two forests and two agricultural sites, we correlated the EC-derived GPP in various time scales with three different near-surface remotely sensed VIs: (1) normalized difference vegetation index (NDVI), (2) enhanced vegetation index (EVI), and (3) near infrared reflectance from vegetation (NIRv) along with NIRvP (i.e., NIRv multiplied by photosynthetically active radiation, PAR). Among the compared VIs, NIRvP showed highest correlation with half-hourly and monthly GPP at all sites. The NIRvP was used to test the reliability of GPP derived by two different NEE partitioning methods: (1) original KoFlux methods (GPPOri) and (2) machine-learning based method (GPPANN). GPPANN showed higher correlation with NIRvP at half-hourly time scale, but there was no difference at daily time scale. The NIRvP-GPP correlation was lower under clear sky conditions due to co-limitation of GPP by other environmental conditions such as air temperature, vapor pressure deficit and soil moisture. However, under cloudy conditions when photosynthesis is mainly limited by radiation, the use of NIRvP was more promising to test the credibility of NEE partitioning methods. Despite the necessity of further analyses, the results suggest that NIRvP can be used as the proxy of GPP at high temporal-scale. However, for the VIs-based GPP estimation with high temporal resolution to be meaningful, complex systems-based analysis methods (related to systems thinking and self-organization that goes beyond the empirical VIs-GPP relationship) should be developed.

Automatic Co-registration of Cloud-covered High-resolution Multi-temporal Imagery (구름이 포함된 고해상도 다시기 위성영상의 자동 상호등록)

  • Han, You Kyung;Kim, Yong Il;Lee, Won Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.4
    • /
    • pp.101-107
    • /
    • 2013
  • Generally the commercial high-resolution images have their coordinates, but the locations are locally different according to the pose of sensors at the acquisition time and relief displacement of terrain. Therefore, a process of image co-registration has to be applied to use the multi-temporal images together. However, co-registration is interrupted especially when images include the cloud-covered regions because of the difficulties of extracting matching points and lots of false-matched points. This paper proposes an automatic co-registration method for the cloud-covered high-resolution images. A scale-invariant feature transform (SIFT), which is one of the representative feature-based matching method, is used, and only features of the target (cloud-covered) images within a circular buffer from each feature of reference image are used for the candidate of the matching process. Study sites composed of multi-temporal KOMPSAT-2 images including cloud-covered regions were employed to apply the proposed algorithm. The result showed that the proposed method presented a higher correct-match rate than original SIFT method and acceptable registration accuracies in all sites.

Voxel-wise Mapping of Functional Magnetic Resonance Imaging in Impression Formation

  • Jeesung Ahn;Yoonjin Nah;Inwhan Ko;Sanghoon Han
    • Science of Emotion and Sensibility
    • /
    • v.25 no.4
    • /
    • pp.77-94
    • /
    • 2022
  • Social interactions often involve encountering inconsistent information about social others. We conducted a functional magnetic resonance imaging (fMRI) study to comprehensively investigate voxel-wise temporal dynamics showing how impressions are anchored and/or adjusted in response to inconsistent social information. The participants performed a social impression task inside an fMRI scanner in which they were shown a male face, together with a series of four adjectives that described the depicted person's personality traits, successively presented beneath the image of the face. Participants were asked to rate their impressions of the person at the end of each trial on a scale of 1 to 8 (where 1 is most negative and 8 is most positive). We established two hypothetical models that represented two temporal patterns of voxel activity: Model 1 featured decreasing patterns of activity towards the end of each trial, anchoring impressions to initially presented information, and Model 2 showed increasing patterns of activity toward the end of each trial, where impressions were being adjusted using new and inconsistent information. Our data-driven model fitting analyses showed that the temporal activity patterns of voxels within the ventral anterior cingulate cortex, medial orbitofrontal cortex, posterior cingulate cortex, amygdala, and fusiform gyrus fit Model 1 (i.e., they were more involved in anchoring first impressions) better than they did Model 2 (i.e., showing impression adjustment). Conversely, voxel-wise neural activity within dorsal ACC and lateral OFC fit Model 2 better than it did Model 1, as it was more likely to be involved in processing new, inconsistent information and adjusting impressions in response. Our novel approach to model fitting analysis replicated previous impression-related neuroscientific findings, furthering the understanding of neural and temporal dynamics of impression processing, particularly with reference to functionally segmenting each region of interest based on relative involvement in impression anchoring as opposed to adjustment.

A Study on The Measurement of Cerebral Cortical Thickness in Patients with Mood Disorders (기분장애 환자의 대뇌 피질 두께 측정에 관한 연구)

  • Do-Hun Kim;Hyo-Young Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.2
    • /
    • pp.73-81
    • /
    • 2024
  • This study compared the cortical thickness of patients with mood disorders and a control group to assess structural abnormalities. A retrospective study was conducted from September 2020 to August 2022 at the Department of Psychiatry, P Hospital in Yangsan, Gyeongsangnam-do. The study included 44 individuals diagnosed with mood disorders and 59 healthy individuals without any pathological lesions. The 3D-T1 MPRAGE images obtained from magnetic resonance imaging examinations were utilized, and FreeSurfer software was employed to measure cortical thickness. Statistical analysis involved independent samples t-tests to measure the differences in means between the two groups, and Cohen's d test was used to compare the effect sizes of the differences. Furthermore, the correlation between the measured average cortical thickness and Positive and Negative Syndrome Scale scores was analyzed. The research results revealed that patients with mood disorders exhibited decreased cortical thickness compared to the normal control group in both superior frontal regions, both rostral middle frontal regions, both caudal middle frontal regions, both pars opercularis, pars orbitals, pars triangularis regions, both superior temporal regions, both inferior temporal regions, both lateral orbitofrontal regions, both medial orbitofrontal regions, both fusiform regions, both posterior cingulate regions, both isthmus cingulate regions, both superior parietal regions, both inferior parietal regions, both supramarginal regions, left postcentral region, right bank of the superior temporal sulcus region, right middle temporal region, right rostral anterior cingulate region, and right insula region. Among them, regions that showed differences with effect sizes of 0.8 or higher were left fusiform (d=0.82), pars opercularis (d=0.94), superior frontal (d=0.88), right lateral orbitofrontal (d=0.85), and pars orbitalis (d=0.89). Additionally, there was a weak negative correlation between PANSS scores and average cortical thickness in both the left hemisphere (r=-0.234) and right hemisphere (r=-0.230). These findings are expected to be helpful in identifying areas of cortical thickness reduction in patients with mood disorders compared to healthy individuals and understanding the relationship between symptom severity and cortical thickness changes.

Data processing system and spatial-temporal reproducibility assessment of GloSea5 model (GloSea5 모델의 자료처리 시스템 구축 및 시·공간적 재현성평가)

  • Moon, Soojin;Han, Soohee;Choi, Kwangsoon;Song, Junghyun
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.9
    • /
    • pp.761-771
    • /
    • 2016
  • The GloSea5 (Global Seasonal forecasting system version 5) is provided and operated by the KMA (Korea Meteorological Administration). GloSea5 provides Forecast (FCST) and Hindcast (HCST) data and its horizontal resolution is about 60km ($0.83^{\circ}{\times}0.56^{\circ}$) in the mid-latitudes. In order to use this data in watershed-scale water management, GloSea5 needs spatial-temporal downscaling. As such, statistical downscaling was used to correct for systematic biases of variables and to improve data reliability. HCST data is provided in ensemble format, and the highest statistical correlation ($R^2=0.60$, RMSE = 88.92, NSE = 0.57) of ensemble precipitation was reported for the Yongdam Dam watershed on the #6 grid. Additionally, the original GloSea5 (600.1 mm) showed the greatest difference (-26.5%) compared to observations (816.1 mm) during the summer flood season. However, downscaled GloSea5 was shown to have only a -3.1% error rate. Most of the underestimated results corresponded to precipitation levels during the flood season and the downscaled GloSea5 showed important results of restoration in precipitation levels. Per the analysis results of spatial autocorrelation using seasonal Moran's I, the spatial distribution was shown to be statistically significant. These results can improve the uncertainty of original GloSea5 and substantiate its spatial-temporal accuracy and validity. The spatial-temporal reproducibility assessment will play a very important role as basic data for watershed-scale water management.

Outlook of Discharge for Daecheong and Yongdam Dam Watershed Using A1B Climate Change Scenario Based RCM and SWAT Model (A1B기후변화시나리오 기반 RCM과 SWAT모형을 이용한 대청댐 및 용담댐 유역 유출량 전망)

  • Park, Jin-Hyeog;Kwon, Hyun-Han;No, Sun-Hee
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.12
    • /
    • pp.929-940
    • /
    • 2011
  • In this study, the future expected discharges are analyzed for Daecheong and Yongdam Dam Watershed in Geum River watershed using A1B scenario based RCM with 27 km spatial resolutions from Korea Meteorological Agency and SWAT model. The direct use of GCM and RCM data for water resources impact assessment is practically hard because the spatial and temporal scales are different. In this study, the problems of spatial and temporal scales were settled by the spatial and temporal downscaling from watershed scale to weather station scale and from monthly to daily of RCM grid data. To generate the detailed hydrologic scenarios of the watershed scale, the multi-site non-stationary downscaling method was used to examine the fluctuations of rainfall events according to the future climate change with considerations of non-stationary. The similarity between simulation and observation results of inflows and discharges at the Yongdam Dam and Daecheong Dam was respectively 90.1% and 84.3% which shows a good agreement with observed data using SWAT model from 2001 to 2006. The analysis period of climate change was selected for 80 years from 2011 to 2090 and the discharges are increased 6% in periods of 2011~2030. The seasonal patterns of discharges will be different from the present precipitation patterns because the simulated discharge of summer was decreased and the discharge of fall was increased.