• Title/Summary/Keyword: temporal lag

Search Result 41, Processing Time 0.028 seconds

Temporal and Spatial Variations of Temperature and Salinity around Ganjeol Point in the Southeast Coast of Korea (한국 남동해 간절곶 주변해역의 열염구조와 시공간적 변동 특성)

  • Choo, Hyo-Sang;Jang, Duck-Jong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.5
    • /
    • pp.474-485
    • /
    • 2014
  • Temporal and spatial variations of temperature and salinity around Ganjeol Point during January, April, August and November 2011 were studied using the data from CTD observations and temperature monitoring buoys deployed at 20 stations in the southeast coast of Korea. Temperature and salinity were nearly homogeneous through the whole depth by mixing of the seawater in spring and winter related to the sea surface cooling. Stratification induced by the river runoff and the bottom cold water was clear in summer. In autumn, sea water had vertical mixing initiated from surface layer and weak stratification at the middle and bottom layers. Low temperature and high salinity emerged throughout the year near Ganjeol Point, which inferred from turbulent mixing and upwelling by its topographical effect. Major periods of 1/4~1.4 day temperature fluctuations were recorded for the most part of the stations. According to the cross spectral density analysis, high coherence and small time lag for temperature fluctuation between layers were shown at Ganjeol Point. However, those features at the northen area of Hoeya river were opposed to Ganjeol Point. From analyses, thermohaline structure and its fluctuation around Ganjeol Point were characterized into those three parts, the south of Ganjeol Point, Ganjeol Point and the north of Ganjeol Point.

Analysis of Annual Variability of Landfast Sea Ice near Jangbogo Antarctic Station Using InSAR Coherence Images (InSAR 긴밀도 영상을 이용한 남극 장보고기지 인근 정착해빙의 연간 변화 분석)

  • Han, Hyangsun;Kim, Yeonchun;Jin, Hyorim;Lee, Hoonyol
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.6
    • /
    • pp.501-512
    • /
    • 2015
  • Landfast sea ice (LFI) in Terra Nova Bay, East Antarctica where the Jangbogo Antarctic Research Station is located, has significant influences on marine ecosystem and the sailing of an icebreaker. Therefore, it is essential to analyze the spatio-temporal variation of the LFI in Terra Nova Bay. In this study, we chose interferometric pairs with the temporal baseline from 1 to 9 days out of a total of 62 COSMO-SkyMed synthetic aperture radar (SAR) images over Terra Nova Bay obtained from December 2010 to January 2012, and then constructed the coherence image of each pair. The LFI showed coherence values higher than 0.3 even in the interferometric SAR (InSAR) pairs of up to 9-days of temporal baseline. This was because the LFI was fixed at coastline and thus showed low temporal phase decorrelation. Based on the characteristics of the coherence on LFI, We defined the areas of LFI that show spatially homogeneous coherence values higher than 0.5. Pack ice (PI) and open water showed low coherence values due to large temporal phase decorreation caused by current and wind. Distinguishing PI from open water in the coherence images was difficult due to their similarly low coherence values. PI was identified in SAR amplitude images by investigating cracks on the ice. The extents of the LFI and PI were estimated from the coherence and SAR amplitude images and their temporal variations were analyzed. The extent of the LFI increased from March to July (maximum extent of $170.7km^2$) and decreased from October. The extent of the PI increased from February to May and decreased from May to July when the LFI increases dramatically. The extent of the LFI and air temperature showed an inverse correlation with a time lag of about 2 months, i.e., the extent of the LFI decreases after 2 months of the increase in the air temperature. Meanwhile the correlation between wind speed and the extent of the LFI was very low. This represents that the extent of LFI in Terra Nova Bay are influenced more by the air temperature than wind speed.

Articulatory Attributes in Korean Nonassimilating Contexts

  • Son, Minjung
    • Phonetics and Speech Sciences
    • /
    • v.5 no.1
    • /
    • pp.109-121
    • /
    • 2013
  • This study examined several kinematic properties of the primary articulator (the tongue dorsum) and the supplementary articulator (the jaw) in the articulation of the voiceless velar stop (/k/) within nonassimilating contexts. We examined in particular the spatiotemporal properties (constriction duration and constriction maxima) from the constriction onset to the constriction offset by analyzing a velar (/k/) followed by the coronal fricative (/s/), the coronal stop (/t/), and the labial (/p/) in across-word boundary conditions (/k#s/, /k#t/, and /k#p/). Along with these measurements, we investigated intergestural temporal coordination between C1 and C2 and the jaw articulator in relation to its coordination with the articulation of consonant sequences. The articulatory movement data was collected by means of electromagnetic midsagittal articulometry (EMMA). Four native speakers of Seoul Korean participated in the laboratory experiment. The results showed several characteristics. First, a velar (/k/) in C1 was not categorically reduced. Constriction duration and constriction degree of the velar (/k/) were similar within nonassimilating contexts (/k#s/=/k#t/=/k#p/). This might mean that spatiotemporal attributes during constriction duration were stable and consistent across different contexts, which might be subsequently associated with the nontarget status of the velar in place assimilation. Second, the gestural overlap could be represented as the order of /k#s/ (less) < /k#p/ (intermediate) < /k#t/ (more) as we measured the onset-to-onset lag (a longer lag indicated shorter gestural overlap.). This indicates a gestural overlap within nonassimilating contexts may not be constrained by any of the several constraints including the perceptual recoverability constraint (e.g., more overlap in Front-to-Back sequences compared to the reverse order (Back-to-Front) since perceptual cues in C1 can be recovered anytime during C2 articulation), the low-level speech motor constraint (e.g., more overlap in lingual-nonlingual sequences as compared to the lingual-lingual sequences), or phonological contexts effects (e.g., similarity in gestural overlap within nonassimilating contexts). As one possible account for more overlap in /k#t/ sequences as compared to /k#p/, we suspect speakers' knowledge may be receptive to extreme encroachment on C1 by the gestural overlap of the coronal in C2 since it does not obscure the perceptual cue of C1 as much as the labial in C2. Third, actual jaw position during C2 was higher in coronals (/s/, /t/) than in the labial (/p/). However, within the coronals, there was no manner-dependent jaw height difference in C2 (/s/=/t/). Vertical jaw position of C1 and C2 was seen as inter-dependent as higher jaw position in C1 was closely associated with C2. Lastly, a greater gap in jaw height was associated with longer intergestural timing (e.g., less overlap), but was confined to the cluster type (/kp/) with the lingual-nonlingual sequence. This study showed that Korean jaw articulation was independent from coordinating primary articulators in gestural overlap in some cluster types (/k#s/, /k#t/) while not in others (e.g., /k#p/). Overall, the results coherently indicate the velar stop (/k/) in C1 was robust in articulation, which may have subsequently contributed to the nontarget status of the velar (/k/) in place assimilation processes.

Soil Evaporation Evaluation Using Soil Moisture Measurements at a Hillslope on a Mountainous Forest (산림 사면에서 실측 토양수분을 이용한 토양증발평가)

  • Gwak, Yong-Seok;Kim, Sang-Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.6
    • /
    • pp.557-568
    • /
    • 2012
  • In order to understand the hydrological processes on the mountainous forest, the configuration of soil evaporation (E) out of evapotranspiration (ET) is a challenging and important topic. In this study, we attempted to understand the soil evaporation process for a humid forest hillslope via measuring and analyzing soil moistures with a sampling interval in 2 hours at three locations for 10 days between May 22th and 31th 2009. Two methods were used to estimate soil evaporation in every 2hr; one is a method using soil moisture measurement ($E_{SM}$), the others methods are based on Penman equation (Penman (1948), Staple (1974), Konukcu (2007), Equilibrium Penman ($E_{equili}$)). As a critical parameter in determining $E_{SM}$, the dry surface layer (DSL), was estimated using energy balance equation. The accumulated soil evaporation ($E_{SM}$) of A, B, C points were estimated as 2.09, 1.08 and 2.88 mm, respectively. The estimated evaporation of Penman (1948), Staple (1974), Konukcu (2007), $E_{equili}$ were 4.91, 8.80, 8.63 and 3.28 mm. The proposed method with soil moisture measurement showed lower soil evaporations than the other conventional methods. The increasing soil temperature and interaction between soil and atmosphere due to existence of litter and DSL are considered as dominant factors for soil evaporation. The $E_{SM}$ has the apparent lag time between 2 and 4 hr compared with $E_{equili}$ and net radiation. The DSL and surface resistance ($r_s$) were increased as soil moisture was decreased for in this study. The estimated DSL through the temporal distribution analysis of soil moisture and tension measurements was also similar to that of the energy balance relationship.

Classification of Various Severe Hazes and Its Optical Properties in Korea for 2011~2013 (2011~2013년 한반도에서 관측된 다양한 연무의 분류 및 광학특성)

  • Lee, Kyu-Min;Eun, Seung-Hee;Kim, Byung-Gon;Zhang, Wenting;Park, Jin-Soo;Ahn, Jun-Young;Chung, Kyung-Won;Park, Il-Soo
    • Atmosphere
    • /
    • v.27 no.2
    • /
    • pp.225-233
    • /
    • 2017
  • Korea has recently suffered from severe hazes, largely being long-range transported from China but frequently mixed with domestic pollution. It is important to identify the origin of the frequently-occurring hazes, which is however hard to clearly determine in a quantitative term. In this regard, we suggest a possible classification procedure of various hazes into long-range transported haze (LH), Yellow Sand (YS), and urban haze (UH), based on mass loading of fine particles, time lag of PM mass concentrations between two sites aligned with dominant wind direction, backward trajectory of air mass, and the mass ratio of PM2.5 to PM10. The analysis sites are Seoul (SL) and Baengnyeongdo (BN), which are distant about 200 km from each other in the west to east direction. Aerosol concentrations at BN are overall lower than those of SL, indicative of BN being a background site for SL. We found distinct time lag of PM2.5 and PM10 concentrations between BN and SL in case of both LH and YS, but the intensity of YS being stronger than LH. Time scale (e-folding time scale) of LH appears to be longer and more variable than YS, which implies that LH covers much larger spatial scale. In addition, we found linear and significant correlations between ${\tau}_a$ obtained from sunphotometer and ${\tau}_{cal}$ calculated from surface aerosol scattering coefficient for LH episodes, relative to few correlation between those for YS, which might be associated with transported height of YS being much higher than LH. Therefore surface PM concentrations for the YS period are thought to be not representative for vertical integrated amount of aerosol loadings, probably by virtue of decoupled structure of aerosol vertical distribution. Improvement of various hazes classification based on the current result would provide the public as well as researchers with more accurate information of LH, UH, and YS, in terms of temporal scale, size, vertical distribution of aerosols, etc.

Studies on the Derivation of the Instantaneous Unit Hydrograph for Small Watersheds of Main River Systems in Korea (한국주요빙계의 소유역에 대한 순간단위권 유도에 관한 연구 (I))

  • 이순혁
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.19 no.1
    • /
    • pp.4296-4311
    • /
    • 1977
  • This study was conducted to derive an Instantaneous Unit Hydrograph for the accurate and reliable unitgraph which can be used to the estimation and control of flood for the development of agricultural water resources and rational design of hydraulic structures. Eight small watersheds were selected as studying basins from Han, Geum, Nakdong, Yeongsan and Inchon River systems which may be considered as a main river systems in Korea. The area of small watersheds are within the range of 85 to 470$\textrm{km}^2$. It is to derive an accurate Instantaneous Unit Hydrograph under the condition of having a short duration of heavy rain and uniform rainfall intensity with the basic and reliable data of rainfall records, pluviographs, records of river stages and of the main river systems mentioned above. Investigation was carried out for the relations between measurable unitgraph and watershed characteristics such as watershed area, A, river length L, and centroid distance of the watershed area, Lca. Especially, this study laid emphasis on the derivation and application of Instantaneous Unit Hydrograph (IUH) by applying Nash's conceptual model and by using an electronic computer. I U H by Nash's conceptual model and I U H by flood routing which can be applied to the ungaged small watersheds were derived and compared with each other to the observed unitgraph. 1 U H for each small watersheds can be solved by using an electronic computer. The results summarized for these studies are as follows; 1. Distribution of uniform rainfall intensity appears in the analysis for the temporal rainfall pattern of selected heavy rainfall event. 2. Mean value of recession constants, Kl, is 0.931 in all watersheds observed. 3. Time to peak discharge, Tp, occurs at the position of 0.02 Tb, base length of hlrdrograph with an indication of lower value than that in larger watersheds. 4. Peak discharge, Qp, in relation to the watershed area, A, and effective rainfall, R, is found to be {{{{ { Q}_{ p} = { 0.895} over { { A}^{0.145 } } }}}} AR having high significance of correlation coefficient, 0.927, between peak discharge, Qp, and effective rainfall, R. Design chart for the peak discharge (refer to Fig. 15) with watershed area and effective rainfall was established by the author. 5. The mean slopes of main streams within the range of 1.46 meters per kilometer to 13.6 meter per kilometer. These indicate higher slopes in the small watersheds than those in larger watersheds. Lengths of main streams are within the range of 9.4 kilometer to 41.75 kilometer, which can be regarded as a short distance. It is remarkable thing that the time of flood concentration was more rapid in the small watersheds than that in the other larger watersheds. 6. Length of main stream, L, in relation to the watershed area, A, is found to be L=2.044A0.48 having a high significance of correlation coefficient, 0.968. 7. Watershed lag, Lg, in hrs in relation to the watershed area, A, and length of main stream, L, was derived as Lg=3.228 A0.904 L-1.293 with a high significance. On the other hand, It was found that watershed lag, Lg, could also be expressed as {{{{Lg=0.247 { ( { LLca} over { SQRT { S} } )}^{ 0.604} }}}} in connection with the product of main stream length and the centroid length of the basin of the watershed area, LLca which could be expressed as a measure of the shape and the size of the watershed with the slopes except watershed area, A. But the latter showed a lower correlation than that of the former in the significance test. Therefore, it can be concluded that watershed lag, Lg, is more closely related with the such watersheds characteristics as watershed area and length of main stream in the small watersheds. Empirical formula for the peak discharge per unit area, qp, ㎥/sec/$\textrm{km}^2$, was derived as qp=10-0.389-0.0424Lg with a high significance, r=0.91. This indicates that the peak discharge per unit area of the unitgraph is in inverse proportion to the watershed lag time. 8. The base length of the unitgraph, Tb, in connection with the watershed lag, Lg, was extra.essed as {{{{ { T}_{ b} =1.14+0.564( { Lg} over {24 } )}}}} which has defined with a high significance. 9. For the derivation of IUH by applying linear conceptual model, the storage constant, K, with the length of main stream, L, and slopes, S, was adopted as {{{{K=0.1197( {L } over { SQRT {S } } )}}}} with a highly significant correlation coefficient, 0.90. Gamma function argument, N, derived with such watershed characteristics as watershed area, A, river length, L, centroid distance of the basin of the watershed area, Lca, and slopes, S, was found to be N=49.2 A1.481L-2.202 Lca-1.297 S-0.112 with a high significance having the F value, 4.83, through analysis of variance. 10. According to the linear conceptual model, Formular established in relation to the time distribution, Peak discharge and time to peak discharge for instantaneous Unit Hydrograph when unit effective rainfall of unitgraph and dimension of watershed area are applied as 10mm, and $\textrm{km}^2$ respectively are as follows; Time distribution of IUH {{{{u(0, t)= { 2.78A} over {K GAMMA (N) } { e}^{-t/k } { (t.K)}^{N-1 } }}}} (㎥/sec) Peak discharge of IUH {{{{ {u(0, t) }_{max } = { 2.78A} over {K GAMMA (N) } { e}^{-(N-1) } { (N-1)}^{N-1 } }}}} (㎥/sec) Time to peak discharge of IUH tp=(N-1)K (hrs) 11. Through mathematical analysis in the recession curve of Hydrograph, It was confirmed that empirical formula of Gamma function argument, N, had connection with recession constant, Kl, peak discharge, QP, and time to peak discharge, tp, as {{{{{ K'} over { { t}_{ p} } = { 1} over {N-1 } - { ln { t} over { { t}_{p } } } over {ln { Q} over { { Q}_{p } } } }}}} where {{{{K'= { 1} over { { lnK}_{1 } } }}}} 12. Linking the two, empirical formulars for storage constant, K, and Gamma function argument, N, into closer relations with each other, derivation of unit hydrograph for the ungaged small watersheds can be established by having formulars for the time distribution and peak discharge of IUH as follows. Time distribution of IUH u(0, t)=23.2 A L-1S1/2 F(N, K, t) (㎥/sec) where {{{{F(N, K, t)= { { e}^{-t/k } { (t/K)}^{N-1 } } over { GAMMA (N) } }}}} Peak discharge of IUH) u(0, t)max=23.2 A L-1S1/2 F(N) (㎥/sec) where {{{{F(N)= { { e}^{-(N-1) } { (N-1)}^{N-1 } } over { GAMMA (N) } }}}} 13. The base length of the Time-Area Diagram for the IUH was given by {{{{C=0.778 { ( { LLca} over { SQRT { S} } )}^{0.423 } }}}} with correlation coefficient, 0.85, which has an indication of the relations to the length of main stream, L, centroid distance of the basin of the watershed area, Lca, and slopes, S. 14. Relative errors in the peak discharge of the IUH by using linear conceptual model and IUH by routing showed to be 2.5 and 16.9 percent respectively to the peak of observed unitgraph. Therefore, it confirmed that the accuracy of IUH using linear conceptual model was approaching more closely to the observed unitgraph than that of the flood routing in the small watersheds.

  • PDF

Estimation of Fire Emissions Using Fire Radiative Power (FRP) Retrieved from Himawari-8 Satellite (히마와리 위성의 산불방사열에너지 자료를 이용한 산불배출가스 추정: 2017년 삼척 및 강릉 산불을 사례로)

  • Kim, Deasun;Won, Myoungsoo;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_1
    • /
    • pp.1029-1040
    • /
    • 2017
  • Wildfires release a large amount of greenhouse gases (GHGs) into the atmosphere. Fire radiative power (FRP) data obtained from geostationary satellites can play an important role for tracing the GHGs. This paper describes an estimation of the Himawari-8 FRP and fire emissions for Samcheock and Gangnueng wildfire in 6 May 2017. The FRP estimated using Himawari-8 well represented the temporal variability of the fire intensity, which cannot be captured by MODIS (Moderate Resolution Imaging Spectroradiometer) because of its limited temporal resolution. Fire emissions calculated from the Himwari-8 FRP showed a very similar time-series pattern compared with the AirKorea observations, but 1 to 3 hour's time-lag existed because of the distance between the station and the wildfire location. The estimated emissions were also compared with those of a previous study which analyzed fire damages using high-resolution images. They almost coincided with 12% difference for Samcheock and 2% difference for Gangneung, demonstrating a reliability of the estimation of fire emissions using our Himawari-8 FRP without high-resolution images. This study can be a reference for estimating fire emissions using the current and forthcoming geostationary satellites in East Asia and can contribute to improving accuracy of meteorological products such as AOD (aerosol optical depth).

Coordinative movement of articulators in bilabial stop /p/

  • Son, Minjung
    • Phonetics and Speech Sciences
    • /
    • v.10 no.4
    • /
    • pp.77-89
    • /
    • 2018
  • Speech articulators are coordinated for the purpose of segmental constriction in terms of a task. In particular, vertical jaw movements repeatedly contribute to consonantal as well as vocalic constriction. The current study explores vertical jaw movements in conjunction with bilabial constriction in bilabial stop /p/ in the context /a/-to-/a/. Revisiting kinematic data of /p/ collected using the electromagenetic midsagittal articulometer (EMMA) method from seven (four female and three male) speakers of Seoul Korean, we examined maximum vertical jaw position, its relative timing with respect to the upper and lower lips, and lip aperture minima. The results of those dependent variables are recapitulated in terms of linguistic (different word boundaries) and paralinguistic (different speech rates) factors as follows. Firstly, maximum jaw height was lower in the across-word boundary condition (across-word < within-word), but it did not differ as a function of different speech rates (comfortable = fast). Secondly, more reduction in the lip aperture (LA) gesture occurred in fast rate, while word-boundary effects were absent. Thirdly, jaw raising was still in progress after the lips' positional extrema were achieved in the within-word condition, while the former was completed before the latter in the across-word condition. Lastly, relative temporal lags between the jaw and the lips (UL and LL) were more synchronous in fast rate, compared to comfortable rate. When these results are considered together, it is possible to posit that speakers are not tolerant of lenition to the extent that it is potentially realized as a labial approximant in either word-boundary condition while jaw height still manifested lower jaw position in the across-word boundary condition. Early termination of vertical jaw maxima before vertical lower lip maxima across-word condition may be partly responsible for the spatial reduction of jaw raising movements. This may come about as a consequence of an excessive number of factors (e.g., upper lip height (UH), lower lip height (LH), jaw angle (JA)) for the representation of a vector with two degrees of freedom (x, y) engaged in a gesture-based task (e.g., lip aperture (LA)). In the task-dynamic application toolkit, the jaw angle parameter can be assigned numerical values for greater weight in the across-word boundary condition, which in turn gives rise to lower jaw position. Speech rate-dependent spatial reduction in lip aperture may be able to be resolved by means of manipulating activation time of an active tract variable in the gestural score level.

Variation in Planktonic Assemblages in Asan Bay During the Winter-Spring Bloom (아산만 해역 동-춘계 대증식기의 플랑크톤 변화)

  • Park, Chul;Lee, Doo-Byoul;Lee, Chang-Rae;Yang, Sung-Ryull;Jung, Byoung-Gwan
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.4
    • /
    • pp.308-319
    • /
    • 2008
  • Temporal variations in plankton assemblages and environmental factors in Asan Bay and their relationships were examined with the data collected from February till early June, 2005. Seawater temperatures showed typical pattern of temporal change observed in temperate waters. Salinity variation was minor. Phytoplankton biomass showed two peaks, one in February only in the inner part of the bay and the other in May in the whole bay. Phytoplankton succession was clearly shown with the increase of seawater temperatures. Diatom (Bacillariophyceae) dominated in February, diatom and cryptomonads (Cryptophyceae) prevailed in May, and dinoflagellates (Dinophyceae) was most abundant in June. Spring bloom in Asan Bay occurred about one month earlier than those observed in temperate seas. Among the inorganic nutrients (N, P and Si), only silicate concentration showed a significant negative correlation with phytoplankton biomass, indicating the sink of this nutrient in the bay to be the uptake by phytoplankton. Nitrate concentration seemed to be a limiting factor in this bay during the study period. Mesozooplankton abundances showed a significant positive correlation with seawater temperatures and a significant negative correlation with phytoplankton biomass. Increase of mesozooplankton abundance followed phytoplankton increase with the time lag of about two months. This increase of zooplankton seemed to be the result of increased seawater temperatures and food.

A Case Study on Typhoon-Midlatitude Synoptic System Interaction: Typhoons Rusa(0215) and Maemi(0314) (태풍-중위도 종관 시스템 상호작용 연구: 루사(0215), 매미(0314) 사례분석)

  • Choi, Ki-Seon;Kim, Baek-Jo;Park, Jong-Kil
    • Journal of Environmental Science International
    • /
    • v.16 no.9
    • /
    • pp.1051-1061
    • /
    • 2007
  • The impact of midlatitude synoptic system (upper-level trough) on typhoon intensity change was investigated by analyzing the spatial and temporal characteristics of vertical wind shear (VWS), relative eddy momentum flux convergence (REFC), and potential vorticity (PV). These variables were computed over the radial mean $300{\sim}1,000km$ from the typhoon center by using GDAPS (Global Data Assimilation and Prediction System) data provided by the Korea Meteorological Administration (KMA). The selected cases in this study are typhoons Rusa (0215) and Maemi (0314), causing much damage in life and property in Korea. Results show that the threshold value of VWS indicating typhoon intensity change (typhoon to severe tropical storm) is approximately 15 m/s and of REFC ranges 6 to 6.5 $ms^{-1}day^{-1}$ in both cases, respectively. During the period with the intensity of typhoon class, PVs with 3 to 3.5 PVU are present in 360K surface-PV field in the cases. In addition, there is a time-lag of 24 hours between central pressure of typhoon and minimum value of VWS, meaning that the midlatitude upper-level trough interacts with the edge of typhoon with a horizontal distance less than 2,000 km between trough and typhoon. That is, strong midlatitude upper-level divergence above the edge of the typhoon provides a good condition for strengthening the vertical circulation associated with the typhoons. In particular, when the distance between typhoon and midlatitude upper-level trough is less than 1,000 km, the typhoons tend to weaken to STS (Severe Tropical Storm). It might be mentioned that midlatitude synoptic system affects the intensity change of typhoons Rusa (0215) and Maemi (0314) while they moves northward. Thus, these variables are useful for diagnosing the intensity change of typhoon approaching to the Korean peninsula.