DOI QR코드

DOI QR Code

Analysis of Annual Variability of Landfast Sea Ice near Jangbogo Antarctic Station Using InSAR Coherence Images

InSAR 긴밀도 영상을 이용한 남극 장보고기지 인근 정착해빙의 연간 변화 분석

  • Han, Hyangsun (Division of Polar Ocean Environment, Korea Polar Research Institute) ;
  • Kim, Yeonchun (Division of Geology and Geophysics, Kangwon National University) ;
  • Jin, Hyorim (Division of Geology and Geophysics, Kangwon National University) ;
  • Lee, Hoonyol (Division of Geology and Geophysics, Kangwon National University)
  • 한향선 (극지연구소 극지해양환경연구부) ;
  • 김연춘 (강원대학교 지질지구물리학부) ;
  • 진효림 (강원대학교 지질지구물리학부) ;
  • 이훈열 (강원대학교 지질지구물리학부)
  • Received : 2015.09.21
  • Accepted : 2015.11.30
  • Published : 2015.12.31

Abstract

Landfast sea ice (LFI) in Terra Nova Bay, East Antarctica where the Jangbogo Antarctic Research Station is located, has significant influences on marine ecosystem and the sailing of an icebreaker. Therefore, it is essential to analyze the spatio-temporal variation of the LFI in Terra Nova Bay. In this study, we chose interferometric pairs with the temporal baseline from 1 to 9 days out of a total of 62 COSMO-SkyMed synthetic aperture radar (SAR) images over Terra Nova Bay obtained from December 2010 to January 2012, and then constructed the coherence image of each pair. The LFI showed coherence values higher than 0.3 even in the interferometric SAR (InSAR) pairs of up to 9-days of temporal baseline. This was because the LFI was fixed at coastline and thus showed low temporal phase decorrelation. Based on the characteristics of the coherence on LFI, We defined the areas of LFI that show spatially homogeneous coherence values higher than 0.5. Pack ice (PI) and open water showed low coherence values due to large temporal phase decorreation caused by current and wind. Distinguishing PI from open water in the coherence images was difficult due to their similarly low coherence values. PI was identified in SAR amplitude images by investigating cracks on the ice. The extents of the LFI and PI were estimated from the coherence and SAR amplitude images and their temporal variations were analyzed. The extent of the LFI increased from March to July (maximum extent of $170.7km^2$) and decreased from October. The extent of the PI increased from February to May and decreased from May to July when the LFI increases dramatically. The extent of the LFI and air temperature showed an inverse correlation with a time lag of about 2 months, i.e., the extent of the LFI decreases after 2 months of the increase in the air temperature. Meanwhile the correlation between wind speed and the extent of the LFI was very low. This represents that the extent of LFI in Terra Nova Bay are influenced more by the air temperature than wind speed.

남극 장보고 과학기지가 위치한 동남극 테라노바 만의 정착해빙은 해양 생태계 및 쇄빙선의 운항에 큰 영향을 미치고 있다. 따라서 테라노바 만의 정착해빙에 대한 시공간적 변화 연구가 수행될 필요가 있다. 이 연구에서는 2010년 12월부터 2012년 1월까지 테라노바 만이 촬영된 총 62개의 COSMO-SkyMed 영상 레이더(Synthetic Aperture Radar; SAR) 영상을 이용하여 1-9일의 시간적 기선거리를 가지는 38개의 간섭쌍을 구축하였고, 각각의 간섭쌍에 대한 긴밀도를 분석하였다. 정착해빙은 해안에 고착되어 시간적 위상오차가 작았으며, 최대 9일의 시간적 기선거리를 가지는 간섭쌍에서도 0.3 이상의 높은 긴밀도를 유지하였다. 이와 같이 정착해빙의 작은 시간적 위상오차에 기초하여, 각각의 긴밀도 영상에서 0.5 이상의 긴밀도가 공간적으로 균질하게 관찰되는 영역을 정착해빙으로 정의하였다. 유빙과 바다는 해류와 바람에 의해 유동하여 시간적 위상오차가 크기 때문에 낮은 긴밀도를 보였다. 긴밀도 영상에서 바다와 구분이 어려운 유빙은 SAR 후방산란강도(amplitude) 영상에서 유빙 표면의 균열(crack)을 관찰함으로써 검출하였다. 긴밀도 및 SAR 영상으로부터 검출된 정착해빙과 유빙의 면적을 산출하였고, 시간에 따른 해빙의 면적변화를 분석하였다. 테라노바 만의 정착해빙 면적은 3월 이후 증가하여 7월에 최대 $170.7km^2$을 나타냈고, 10월부터 감소하는 것으로 나타났다. 유빙의 면적은 2-5월에 증가하고, 정착해빙의 면적이 급격히 증가하는 5-7월에 감소하였다. 긴밀도 영상에서 분석된 테라노바 만의 정착해빙 면적을 장보고 과학기지의 자동기상관측기구로 측정된 기온 및 풍속과 비교하였다. 정착해빙 면적은 기온의 증감과 약 2개월의 시간차를 가지는 역의 상관관계를 나타냈다. 반면 풍속과 정착해빙의 면적은 서로 매우 낮은 상관성을 보였다. 이는 테라노바 만의 정착해빙 면적 변화가 풍속보다는 기온에 더 크게 영향을 받는다는 것을 의미한다.

Keywords

References

  1. Allison, I., R.E. Brandt, and S.G. Warren, 1993. East Antarctic sea ice: albedo, thickness distribution, and snow cover, Journal of Geophysical Research, 98(C7): 12417-12429. https://doi.org/10.1029/93JC00648
  2. Bjorgo, E., O.M. Johannessen, and M.W. Miles, 1997. Analysis of merged SMMR-SSMI time series of Arctic and Antarctic sea ice parameters 1978-1995, Geophysical Research Letters, 24(4): 413-416. https://doi.org/10.1029/96GL04021
  3. Bromwich D.H. and D.D Kurtz, 1984. Katabatic wind forcing of the Terra Nova Bay polynya, Journal of Geophysical Research, 89(C3): 3561-3572. https://doi.org/10.1029/JC089iC03p03561
  4. Cavalieri, D.J., C.L. Parkinson, P. Gloersen, J.C. Comiso, and H.J. Zwally, 1999. Deriving longterm time series of sea ice cover from satellite passive-microwave multisensor data sets, Journal of Geophysical Research, 104(C7): 15803-15814. https://doi.org/10.1029/1999JC900081
  5. Dammert, P.B.G., M. Lepparanta, and J. Askne, 1998. SAR interferometry over Baltic Sea ice, International Journal of Remote Sensing, 19(16): 3019-3037. https://doi.org/10.1080/014311698214163
  6. Fraser, A.D., R.A. Massom, K.J. Michael, B.K. Galton-Fenzi, and J.L. Lieser, 2012. East Antarctic landfast sea ice distribution and variability, 2000-08, Journal of Climate, 25: 1137-1156. https://doi.org/10.1175/JCLI-D-10-05032.1
  7. Giles, A.B., R.A. Massom, and V.I. Lytle, 2008. Fastice distribution in East Antarctica during 1997 and 1999 determined using RADARSAT data, Journal of Geophysical Research, 113, C02S14.
  8. Han, H. and H. Lee, 2007. Comparative study of KOMPSAT-1 EOC images and SSM/I NASA Team sea ice concentration of the Arctic, Korean Journal of Remote Sensing, 23(6): 507-520 (In Korean with English abstract). https://doi.org/10.7780/kjrs.2007.23.6.507
  9. Han, H. and H. Lee, 2011. Analysis of surface displacement of glaciers and sea ice around Canisteo Peninsula, West Antarctica, by using 4-pass DInSAR technique, Korean Journal of Remote Sensing, 27(5): 535-542 (In Korean with English abstract). https://doi.org/10.7780/kjrs.2011.27.5.535
  10. Han, H. and H. Lee, 2014. Tide deflection of Campbell Glacier Tongue, Antarctica, analyzed by double-differential SAR interferometry and finite element method, Remote Sensing of Environment, 141: 201-213. https://doi.org/10.1016/j.rse.2013.11.002
  11. Han, H. and H. Lee, 2015. Tide-corrected flow velocity and mass balance of Campbell Glacier Tongue, East Antarctica, derived from interferometric SAR, Remote Sensing of Environment, 160:180-192. https://doi.org/10.1016/j.rse.2015.01.014
  12. Heil, P., 2006. Atmospheric conditions and fast ice at Davis, East Antarctica: A case study, Journal of Geophysical Research, 111, C05009. https://doi.org/10.1029/2005JC002904
  13. Hong, S.-H. and S. Wdowinski, 2013. Interferometric coherence analysis using space-borne synthetic aperture radar with respect to spatial resolution, Korean Journal of Remote Sensing, 29(4): 389-397 (In Korean with English abstract). https://doi.org/10.7780/kjrs.2013.29.4.4
  14. Leberl, F., J. Raggam, C. Elachi, and W.J. Campbell, 1983. Sea ice motion measurements from SEASAT SAR images, Journal of Geophysical Research, 88(C3): 1915-1928. https://doi.org/10.1029/JC088iC03p01915
  15. Lei, R., Z. Li, B. Cheng, Z. Zhang, and P. Heil, 2010. Annual cycle of landfast sea ice in Prydz Bay, east Antarctica, Journal of Geophysical Research, 115, C02006.
  16. Lepparanta, M., Y. Sun, and J. Haapala, 1998. Comparisons of sea ice velocity fields from ERS-1 SAR and a dynamic model, Journal of Glaciology, 44(147): 248-262. https://doi.org/10.1017/S0022143000002598
  17. Markus, T., D.J. Cavalieri, M.A. Tschudi, and A. Ivannoff, 2003. Comparison of aerial video and Landsat 7 data over ponded sea ice, Remote Sensing of Environment, 86(4): 458-469. https://doi.org/10.1016/S0034-4257(03)00124-X
  18. Markus, T. and S.T. Dokken, 2002. Evaluation of late summer passive microwave Arctic sea ice retrievals, IEEE Transactions on Geoscience and Remote Sensing, 40(2): 348-356. https://doi.org/10.1109/36.992795
  19. Massonnet, D. and K.L. Feigl, 1998. Radar interferometry and its application to changes in the Earth's surface, Review of Geophysics, 36(4): 441-500. https://doi.org/10.1029/97RG03139
  20. Nystuen, J.A. and F.W. Garcia Jr., 1992. Sea ice classification using SAR backscatter statistics, IEEE Transactions on Geoscience and Remote Sensing, 30(3): 502-509. https://doi.org/10.1109/36.142928
  21. Parkinson, C.L., D. Rind, R.J. Healy, and D.G. Martinson, 2001. The impact of sea ice concentration accuracies on climate model simulations with the GISS GCM, Journal of Climate, 14(12): 2606-2623. https://doi.org/10.1175/1520-0442(2001)014<2606:TIOSIC>2.0.CO;2
  22. Peterson, I.K., S.J. Prinsenberg, and J.S. Holladay, 2008. Observations of sea ice thickness, surface roughness and ice motion in Amundsen Gulf, Journal of Geophysical Research, 113, C06016.
  23. Stenni, B., F. Serra, M. Frezzotti, V. Maggi, R. Traversi, S. Becagli, and R. Udisti, 2000. Snow accumulation rates in northern Victoria Land, Antarctica, by firn-core analysis, Journal of Glaciology, 46(155): 541-552. https://doi.org/10.3189/172756500781832774
  24. Zebker, H.A. and J. Villasenor, 1992. Decorrelation in interferometric radar echoes, IEEE Transactions on Geoscience and Remote Sensing, 30(5): 950-959. https://doi.org/10.1109/36.175330

Cited by

  1. 한국의 극지 원격탐사 vol.34, pp.6, 2018, https://doi.org/10.7780/kjrs.2018.34.6.2.1