• Title/Summary/Keyword: temporal average

Search Result 648, Processing Time 0.034 seconds

Weekly Variation of Phytoplankton Communities in the Inner Bay of Yeong-do, Busan (부산 영도 내만에서 식물플랑크톤 군집의 주간 변동 특성)

  • YANG, WONSEOK;CHOI, DONG HAN;WON, JONGSEOK;KIM, JIHOON;HYUN, MYUNG JIN;LEE, HAEUN;LEE, YEONJUNG;NOH, JAE HOON
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.26 no.4
    • /
    • pp.356-368
    • /
    • 2021
  • To understand the temporal variation of phytoplankton communities in a coastal area, the biomass and diversity were weekly investigated in the inner bay of Yeong-do, Busan. In the study area, chlorophyll a concentration ranged from 0.43~7.58 mg m-3 during the study, indicating the study area was in mesotrophic or eutrophic status. The fractions of chlorophyll a occupied by large phytoplankton (> 3 ㎛ diameter) exhibited an average of 80% of total chlorophyll a in this study. Among the large phytoplankton, while Bacillariophyta was the most dominant in spring and summer, Cryptophyceae prevailed in the fall and winter. On the contrary, in the picophytoplankton community less than 3 ㎛ in diameter, Mamiellophyceae was the most dominant in most seasons, Cryptophyceae was relatively high with an average of 17.7 ± 17.6% throughout the year, but seasonal variations were large. Dinophyceae rarely occupied a higher fraction up to 60.4% of the picophytoplankton community. By weekly monitoring at a coastal station for 13 months, it is suggested that phytoplankton communities in coastal waters could be changed on a short time scale. If data are steadily accumulated at the time-series monitoring site for a long time, these will provide important data for understanding the long-term dynamics of phytoplankton as well as the impact of climate and environmental changes.

Analysis of Micro-Sedimentary Structure Characteristics Using Ultra-High Resolution UAV Imagery: Hwangdo Tidal Flat, South Korea (초고해상도 무인항공기 영상을 이용한 한국 황도 갯벌의 미세 퇴적 구조 특성 분석)

  • Minju Kim;Won-Kyung Baek;Hoi Soo Jung;Joo-Hyung Ryu
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.3
    • /
    • pp.295-305
    • /
    • 2024
  • This study aims to analyze the micro-sedimentary structures of the Hwangdo tidal flats using ultra-high resolution unmanned aerial vehicle (UAV) data. Tidal flats, located in the transitional area between land and sea, constantly change due to tidal activities and provide a unique environment important for understanding sedimentary processes and environmental conditions. Traditional field observation methods are limited in spatial and temporal coverage, and existing satellite imagery does not provide sufficient resolution to study micro-sedimentary structures. To overcome these limitations, high-resolution images of the Hwangdo tidal flats in Chungcheongnam-do were acquired using UAVs. This area has experienced significant changes in its sedimentary environment due to coastal development projects such as sea wall construction. From May 17 to 18, 2022, sediment samples were collected from 91 points during field surveys and 25 in-situ points were intensively analyzed. UAV data with a spatial resolution of approximately 0.9 mm allowed identifying and extracting parameters related to micro-sedimentary structures. For mud cracks, the length of the major axis of the polygons was extracted, and the wavelength and ripple symmetry index were extracted for ripple marks. The results of the study showed that in areas with mud content above 80%, mud cracks formed at an average major axis length of 37.3 cm. In regions with sand content above 60%, ripples with an average wavelength of 8 cm and a ripple symmetry index of 2.0 were formed. This study demonstrated that micro-sedimentary structures of tidal flats can be effectively analyzed using ultra-high resolution UAV data without field surveys. This highlights the potential of UAV technology as an important tool in environmental monitoring and coastal management and shows its usefulness in the study of sedimentary structures. In addition, the results of this study are expected to serve as baseline data for more accurate sedimentary facies classification.

Assessment for Characteristics and Variations of Upland Drought by Correlation Analysis in Soil Available Water Content with Meteorological Variables and Spatial Distribution during Soybean Cultivation Period (토양유효수분율 공간분포와 기상인자와의 상관관계 분석을 통한 콩 재배기간 밭가뭄 특성 및 변동성 평가)

  • Se-In Lee;Jung-hun Ok;Seung-oh Hur;Bu-yeong Oh;Jeong-woo Son;Seon-ah Hwang
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.26 no.2
    • /
    • pp.127-139
    • /
    • 2024
  • Climate change has increased extreme weather events likewise heatwaves, heavy rain, and drought. Unlike other natural disaster, drought is a slowly developing phenomenon and thus drought damage increases as the drought continues. Therefore, it is necessary to understand the characteristics and mechanism of drought occurrence. Agricultural drought occurs when the water supply needed by crops becomes insufficient due to lack of soil water. Therefore, soil water is used as a key variable affecting agricultural drought. In this study, we examined the spatio-temporal distribution and trends of drought across the Korean Peninsula by determining the soil available water content (SAWC) through a model that integrated soil, meteorological, and crop data. Moreover, an investigation into the correlation between meteorological variables and the SAWC was conducted to assess how meteorological characteristics influence the nature of drought occurrences. During the soybean cultivation period, the average SAWC was lowest in 2018 at 88.6% and highest in 2021 at 103.2%. Analysis of the spatial distribution of SAWC by growth stage revealed that the lowest SAWC occurred during the flowering stage (S3) in 2018, during the leaf extension stage (S2) in 2019, during the seedling stage (S1) in 2020, again during the flowering stage (S3) in 2021, and during the seedling stage (S1) in 2022. Based on the average SAWC across different growth stages, the frequency of upland drought was the highest at 22 times during the S3 in 2018. The lowest SAWC was primarily influenced by a significant negative correlation with rainfall and evapotranspiration, whereas the highest SAWC showed a significant positive correlation with rainfall and relative humidity, and a significant negative correlation with reference evapotranspiration.

The Outbreak of Red Tides in the Coastal Waters off Kohung, Chonnam, Korea 3. The Temporal and Spatial Variations in the Heterotrophic Dinoflagellates and Ciliates in 1997 (전남 고흥 해역의 유해성 적조의 발생연구 3. 1997년도 종속영향성 와편모류와 섬모류의 시공간적 변화)

  • Jeong, Hae-Jin;Park, Jong-Kyu;Kim, Jae-Seong;Kim, Seong-Taek;Yoon, Joo-Eh;Kim, Su-Kyeong;Park, Yong-Min
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.1
    • /
    • pp.37-46
    • /
    • 2000
  • We investigated the temporal and spatial variations in heterotrophic dinoflagellates (hereafter HTD) and ciliates from June to September 1997 in the waters off Kohung, Korea where red tides dominated by harmful dinoflagellates had occurred from August to October since 1995. We took water samples five times from 5-7 depths at 3 stations in this study period. A total of 17 HTD species were present and of these species in the genus Protoperidinium were 11. The species number of tintinnids (hereafter TIN) present totalled 15 and several naked ciliate (hereafter NC) species were observed. The species numbers of HTD and TIN rapidly increased between August 1st and 21st and then reached to the maximum numbers of 13 and 10, respectively, on August 27 when red tides dominated by Gyrodinium impudicum were first observed in the study area. However the species numbers drastically decreased on September 22. The maximum densities of HTD, TIN, and NC were 45, 39, 57 cells $ml^{-1}$, respectively. ADAS, calculated by averaging the densities of a certain species in the all samples collected from all depths and stations at a sampling period, most increased between August 1st and 21st and then reached to the maximum density of f cells $ml^{-1}$ on August 27 for HTD, while did between August 21st and 27th and up to 7 cells $ml^{-1}$ for TIN. Unlike ADAS of HTD and TIN, that of NC did not change much with the maximum of 8 cells $ml^{-1}$ on August 27th. The pattern of the temperal variation in the species number and ADAS of HTD was similar to that of diatoms and the distributions of Protoperidinium spp. and diatoms had a strong positive correlation. This evidence suggests that HTD, in particular Protoperidinium spp. be a grazer on diatom. In general, the densities of HTD, TIN, and NC decreased with going to stations located in the outer bay. Therefore, the availability of suitable prey and distance from the coastal line might be responsible for the distribution of HTD, TIN, and NC. The results of the present study provide a basis for further experiments for the feeding by dominant HTD, TIN, and NC on dominant phytoplankton including red tide species and for understanding food webs in the planktonic community before, during, and after the red tide outbreak.

  • PDF

Seasonal Variations of Epilithic Biofilm Biomass and Community Structure at Byeonsan Peninsula, Korea (한국 변산반도 암반생물막의 생물량과 군집구조의 계절 변화)

  • Kim, Bo Yeon;Park, Seo Kyoung;Lee, Jung Rok;Choi, Han Gil
    • Korean Journal of Environment and Ecology
    • /
    • v.30 no.6
    • /
    • pp.1009-1021
    • /
    • 2016
  • The community structure and abundance of epilithic biofilm were bimonthly examined to know spatial and temporal patterns of biofilm biomass and taxonimical composition at the two study sites, Gosapo and Gyeokpo with different degrees of wave exposure levels from November 2010 to September 2011. Biomass was estimated by using chlorophyll a contents (Chl a), normalized difference vegetation index (NDVI), and vegetation index (VI). Cyanobacteria such as Aphanotece spp. predominated in the proportion of 57.53% at Gosapo and of 61.12% at Gyeokpo and they are abundant in mid shore and in summer at both study sites. The diatoms Navicula spp., Achnanthes spp. and Licmophora spp. were common species and they showed an increasing trend from high to low shore. NDVI, VI, and chl a contents were the greatest at mid shore for Gosapo (0.44, 3.05, $24.56{\mu}g/cm^2$) and at low shore for Gyeokpo (0.41, 2.73, $17.98{\mu}g/cm^2$). NDVI, VI, and chl a content were all maximal in January and minimal in March at the both sites. Average NDVI, VI, and chlorophyll a contents of biofilms were greater at Gosapo (0.43, 2.89, $22.84{\mu}g/cm^2$) than Gyeokpo (0.38, 2.48, $15.48{\mu}g/cm^2$).Of three shore levels(high, mid, and low) Chl a contents were positively correlated with NDVI and VI at the two study sites indicating that non-destructive NDVI and VI values can be used in stead of destructive Chl a extraction method. In conclusion, epilithic biofilm was more abundant seasonally in winter, vertically in mid and low intertidal zone, and horizontally at wave exposed shore than in summer, at high and sheltered shore in Korea.

Estimate and Analysis of Planetary Boundary Layer Height (PBLH) using a Mobile Lidar Vehicle system (이동형 차량탑재 라이다 시스템을 활용한 경계층고도 산출 및 분석)

  • Nam, Hyoung-Gu;Choi, Won;Kim, Yoo-Jun;Shim, Jae-Kwan;Choi, Byoung-Choel;Kim, Byung-Gon
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.3
    • /
    • pp.307-321
    • /
    • 2016
  • Planetary Boundary Layer Height (PBLH) is a major input parameter for weather forecasting and atmosphere diffusion models. In order to estimate the sub-grid scale variability of PBLH, we need to monitor PBLH data with high spatio-temporal resolution. Accordingly, we introduce a LIdar observation VEhicle (LIVE), and analyze PBLH derived from the lidar loaded in LIVE. PBLH estimated from LIVE shows high correlations with those estimated from both WRF model ($R^2=0.68$) and radiosonde ($R^2=0.72$). However, PBLH from lidar tend to be overestimated in comparison with those from both WRF and radiosonde because lidar appears to detect height of Residual Layer (RL) as PBLH which is overall below near the overlap height (< 300 m). PBLH from lidar with 10 min time resolution shows typical diurnal variation since it grows up after sunrise and reaches the maximum after 2 hours of sun culmination. The average growth rate of PBLH during the analysis period (2014/06/26 ~ 30) is 1.79 (-2.9 ~ 5.7) m $min^{-1}$. In addition, the lidar signal measured from moving LIVE shows that there is very low noise in comparison with that from the stationary observation. The PBLH from LIVE is 1065 m, similar to the value (1150 m) derived from the radiosonde launched at Sokcho. This study suggests that LIVE can observe continuous and reliable PBLH with high resolution in both stationary and mobile systems.

A Kinematic Analysis on Lateral Break-Fall of Security Nartial Arts (경호무도 측방낙법의 운동학적 분석)

  • Kim, Yong-Hak;Lee, Sae-Hwan
    • Korean Security Journal
    • /
    • no.24
    • /
    • pp.53-66
    • /
    • 2010
  • This study aims to analyze kinematic variables regarding lateral break-fall quantitatively that can protect the body, prevent the injury and minimize the impact. To this end, three Hapkido, judo athletes of H University with experience of over 5 years were selected. Test was conducted through three dimensional image analysis by checking the time and order the subjects reach a mat. In this study, lateral break-fall was repeated five times and among them, the best movement was selected. The picture shot with high-speed camera was analyzed by using KWON3D ver. 3.1 program through three dimensional coordinate calculation based on DLT method and smoothing process of data. Study results were as follows. 1. With respect to time variables shown in lateral break-fall of A, B, C athletes, there is small difference in temporal variables and in the order the body reaches a mat. With respect to average value, hand is ($0.94{\pm}0.20$), elbow ($0.97{\pm}0.17$), hip ($0.97{\pm}0.18$), back ($0.98{\pm}0.18$), and shoulder ($1.04{\pm}0.16$). Time variable the body reaches a mat in lateral break-fall is in hand, elbow, hip, back and shoulder. 2. With respect to moving distance variables shown in lateral break-fall of A, B, C athletes, hand is ($34.33{\pm}34.59$), elbow ($52.00{\pm}26.06$), hip ($70.00{\pm}15.72$), back ($153.67{\pm}17.93$), and should ($130.67{\pm}29.02$). The fact that this study contributed to improving security martial arts technique and protecting the body by understanding the principle of lateral break-fall movement is of significance. In addition, the fact that this study provided systematic basic data for improving security martial arts technique is significant.

  • PDF

Spatial and Temporal Variations of Environmental Factors and Phytoplankton Community in Lake Yongdam, Korea (용담호에서 환경요인과 식물플랑크톤의 시공간적 변동)

  • Kwon, Sang-Yong;Kim, Young-Geel;Yih, Won-Ho;Lim, Byung-Jin;Kim, Bom-Chul;Heo, Woo-Myung
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.3 s.117
    • /
    • pp.366-377
    • /
    • 2006
  • Environmental gradients and phytoplankton community were studied on a monthly basis, at 3 stations of Lake Yongdam, from April 2002 March 2004. During July to August, thermocline formed at the depth of about 10 m, but it was lowerd depth, in between 25${\sim}$30 m in October. Monthly variations of the epilimnetic (0${\sim}$5 m) TP concentrations at station 1, 2 and 3 were in the range of $5.1{\sim}36.1\;mg\;P\;{\cdot}\;m^{-3}$, $6.1{\sim}77.7\;mg\;P\;{\cdot}\;m^{-3}$ and $6.7{\sim}47.7\;mg\;P\;{\cdot}\;m^{-3}$ respectively; with higher concentrations at the upstream areas showing. Monthly average of the epilimnetic (0${\sim}$5 m) TN concentration at Station 1 was in the range of $0.88{\sim}1.73\;mg\;N\;{\cdot}\;L^{-1}$, and Station 3 was in the range of $0.94{\sim}2.77\;mg\;N\;{\cdot}\;L^{-1}$, which is higher if compared with the values of station 1. Transparency wa:s in the range of 0.8${\sim}$6.7 m, with lower values at upstream areas and higher at the downstream area. As for phytoplankton, during the winter season, diatoms had high appearance rate; during the spring season, Cyclotella comta, Aulacoseira ambigua f. spiralis, A. granulata and similar diatoms, during spring and summer Ankistrodesmus spiralis, Chodatella subsala, Crucigenia irregularis, Coelastrum cambricum, Scenedesmus ecornis v. ecornis.

The Variations of Stratospheric Ozone over the Korean Peninsula 1985~2009 (한반도 상공의 오존층 변화 1985~2009)

  • Park, Sang Seo;Kim, Jhoon;Cho, Nayeong;Lee, Yun Gon;Cho, Hi Ku
    • Atmosphere
    • /
    • v.21 no.4
    • /
    • pp.349-359
    • /
    • 2011
  • The climatology in stratospheric ozone over the Korean Peninsula, presented in previous studies (e.g., Cho et al., 2003; Kim et al., 2005), is updated by using daily and monthly data from satellite and ground-based data through December 2009. In addition, long-term satellite data [Total Ozone Mapping Spectrometer (TOMS), Ozone Monitoring Instrument (OMI), 1979~2009] have been also analyzed in order to deduce the spatial distributions and temporal variations of the global total ozone. The global average of total ozone (1979~2009) is 298 DU which shows a minimum of about 244 DU in equatorial latitudes and increases poleward in both hemispheres to a maximum of about 391 DU in Okhotsk region. The recent period, from 2006 to 2009, shows reduction in total ozone by 6% relative to the values for the pre-1980s (1979~1982). The long-term trends were estimated by using a multiple linear regression model (e.g., WMO, 1999; Cho et al., 2003) including explanatory variables for the seasonal variation, Quasi-Biennial Oscillation (QBO) and solar cycle over three different time intervals: a whole interval from 1979 to 2009, the former interval from 1979 to 1992, and the later interval from 1993 to 2009 with a turnaround point of deep minimum in 1993 is related to the effect of Mt. Pinatubo eruption. The global trend shows -0.93% $decade^{-1}$ for the whole interval, whereas the former and the later interval trends amount to -2.59% $decade^{-1}$ and +0.95% $decade^{-1}$, respectively. Therefore, the long-term total ozone variations indicate that there are positive trends showing a recovery sign of the ozone layer in both North/South hemispheres since around 1993. Annual mean total ozone (1985~2009) is distributed from 298 DU for Jeju ($33.52^{\circ}N$) to 352 DU for Unggi ($42.32^{\circ}N$) in almost zonally symmetric pattern over the Korean Peninsula, with the latitudinal gradient of 6 DU $degree^{-1}$. It is apparent that seasonal variability of total ozone increases from Jeju toward Unggi. The annual mean total ozone for Seoul shows 323 DU, with the maximum of 359 DU in March and the minimum of 291 DU in October. It is found that the day to day variability in total ozone exhibits annual mean of 5.7% in increase and -5.2% in decrease. The variability as large as 38.4% in increase and 30.3% in decrease has been observed, respectively. The long-term trend analysis (e.g., WMO, 1999) of monthly total ozone data (1985~2009) merged by satellite and ground-based measurements over the Korean Peninsula shows increase of 1.27% $decade^{-1}$ to 0.80% $decade^{-1}$ from Jeju to Unggi, respectively, showing systematic decrease of the trend magnitude with latitude. This study also presents a new analysis of ozone density and trends in the vertical distribution of ozone for Seoul with data up to the end of 2009. The mean vertical distributions of ozone show that the maximum value of the ozone density is 16.5 DU $km^{-1}$ in the middle stratospheric layer between 24 km and 28 km. About 90.0% and 71.5% of total ozone are found in the troposphere and in the stratosphere between 15 and 33 km, respectively. The trend analysis reconfirms the previous results of significant positive ozone trend, of up to 5% $decade^{-1}$, in the troposphere and the lower stratosphere (0~24 km), with negative trend, of up to -5% $decade^{-1}$, in the stratosphere (24~38 km). In addition, the Umkehr data show a positive trend of about 3% $decade^{-1}$ in the upper stratosphere (38~48 km).

Comparison of Diagnostic Performance between Interictal F-18-FDG PET and Ictal Tc-99m-HMPAO SPECT in Occipital Lobe Epilepsy (후두엽간질 환자에서 F-18-FDG PET와 발작기 Tc-99m-HMPAO SPECT의 간질원인병소 진단 성능 비교)

  • Kim, Seok-Ki;Lee, Dong-Soo;Yeo, Jeong-Seok;Lee, Sang-Kun;Kim, Joo-Yong;Jeong, Jae-Min;Chung, June-Key;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.33 no.3
    • /
    • pp.262-272
    • /
    • 1999
  • Purpose: Interictal F-18-fluorodeoxyglucose (FDG) PET and ictal Tc-99m-HMPAO SPECT are found to be useful in localizing epileptogenic zones in neocortical lateral temporal or frontal lobe epilepsy. We investigated whether interictal F-18-FDG PET or ictal Tc-99m-HMPAO SPECT was useful to find epileptogenic Bones in occipital lobe epilepsy (OLE). Materials and Methods: We reviewed patterns of hypometabolism in interictal F-18-FDG PET and of hyperperfusion in ictal Tc-99m-HMPAO SPECT in 17 OLE patients (mean age=$27{\pm}6.8$ year, M:F= 10:7, injection time= $30{\pm}17$ sec). OLE was diagnosed based on invasive electroencephalography (EEG) study, surgery and post-surgical outcome (Engel class I in all for average 14 months). Results: Epileptogenic zones were correctly localized in 9 (60%) out of 15 patients by interictal F-18-FDG PET. Epiletogenic hemispheres were correctly lateralized in 14 patients (93%). By ictal Tc-99m-HMPAO SPECT, epileptogenic hemispheres were correctly lateralized in 13 patients (76%), but localization was possible only in 3 patients (18%). Among patients who showed no abnormality with MR imaging and no correct localization with ictal Tc-99m-HMPAO SPECT, interictal F-18-FDG PET was helpful in 2 patients. Conclusion: Ictal Tc-99m-HMPAO SPECT was helpful in lateralization but not in localization in OLE. Interictal F-18-FDG PET was helpful for localization of epileptogenic zones even in patients with ambiguous MR or ictal SPECT findings.

  • PDF