• 제목/요약/키워드: template polymerization

검색결과 53건 처리시간 0.019초

포도당 산화효소가 고정화된 Popyrrole Nanotubules 효소전극의 전기화학적 특성 (Electrochemical Properties of Polypyrrole Nanotubules Enzyme Electrode Immobilized with Glucose Oxidase)

  • 김현철;구할본;사공건
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 하계학술대회 논문집
    • /
    • pp.909-912
    • /
    • 2000
  • We synthesized polypyrrole (PPy) nanotubules by oxidative polymerization of the pyrrole monomer within the pores of a polycarbonate template. The electrochemical behavior was investigated using cyclic voltammetry. The redox potential was about -0.5 V vs. Ag/AgCl reference electrode, while the potential was about 0 V for PPy film. It is considered as the backbone grows according to the pore wall. Therefore, it is possible to be arranged regularly. That leads to improvement in the electron hopping. By electrochemical doping of glucose oxidase (GOx) on PPy nanotubules, an enzyme electrode has been fabricated. The kinetic parameter of biochemical reaction with glucose was evaluated. The formal Michaelis constant and maximum current calculated by computer were about 11.4 mmol $dm^3$ and 170.85 A respectively. Obviously, an affinity for the substrate and current response of the PPy nanotubules enzyme electrode are rather good, comparing with that of PPy film.

  • PDF

오제스키병 바이러스 검출을 위한 Polymerase Chain Reaction (Polymerase Chain Reaction for the Detection of Aujeszky's Disease Virus)

  • 황동희;여상건
    • 대한수의학회지
    • /
    • 제43권2호
    • /
    • pp.239-246
    • /
    • 2003
  • Polymerase chain reaction (PCR) was evaluated for the early detection of Aujeszky's disease virus (ADV) DNA from virus-infected cell cultures. For the purposes, the Korean ADV NYJ1-87 was propagated in swine kidney (SK) cells and subjected to the amplification of DNA (217 bp) by PCR using sense and antisense primers specific to gp50 gene of the ADV. In detection of cell-associated viral DNA, reliable PCR conditions were determined as 30 cycles of reaction consisting 1 minute each of denaturation at $94^{\circ}C$, annealing at $55^{\circ}C$ and polymerization at $72^{\circ}C$. The PCR encountered best results with reagent mixtures of $50{\mu}l$ containing $200{\mu}M$ dNTPs, $0.2{\mu}M$ each sense and antisense primers, 1 mM $MgCl_2$ and 10% (v/v) template DNA in the final concentrations. ADV-specific DNAs were detected as early as 6, 6, and 9 hours post-infection, respectively, from lysates of the SK cells infected with ADV of $10^3$, $10^2$ and $10^1\;TCID_{50}/ml$ by this condition. In culture supernatant, the DNAs were detected from ADV of as low infectivity as $10^ {-3}\;TCID_{50}/ml$ by the reduced reagent concentrations and 30 cycles of 1 minute each of denaturation at $94^{\circ}C$ and annealing at $55^{\circ}C$, and 2 minutes of polymerization at $72^{\circ}C$. The lowest amount of detectable ADV DNA was 1 fg. In conclusion, the PCR condition established in the present study was recognized as a feasible alternative to time-consuming procedures in isolation and characterization of the virus.

Polystyrene-b-Poly(oxyethylene methacrylate) 블록 공중합체 막을 이용한 은 나노입자 생성 (Formation of Silver Nanoparticles in Polystyrene-b-Poly(oxyethylene methacrylate) Block Copolymer Membranes)

  • 고주환;서진아;노동규;김종학
    • 멤브레인
    • /
    • 제20권1호
    • /
    • pp.55-61
    • /
    • 2010
  • 원자전달 라디칼 중합을 이용하여 polystyrene-b-poly(oxyethylene methacrylate) (PS-b-POEM) 블록 공중합체를 합성하고, FT-IR을 통해 중합이 성공적으로 이루어졌음을 확인하였다. 또한 자기 조립된 블록 공중합체 막을 제조한 후, 전구체 $AgCF_3SO_3$ 도입과 UV 조사를 통해 고체상에서 은 나노입자를 성장시켰다. TEM 전자현미경과 UV-visible 분광학 분석을 통해 블록 공중합체 막의 내부에 은 나노입자가 형성된 것을 확인하였고, 또한 친수성 POEM 영역의 함량을 조절함으로써 나노입자의 크기를 조절할 수 있었다. 금속 나노입자를 제조하는 데 있어서 POEM 함량이 적은 블록 공중합체가 더 효과적임을 확인하였다.

Preparation and characterization of nanoflake composite multi core-shell SrFe12O19/Fe3O4/PEG/PPy

  • Hosseini, Seyed Hossein;Majidpour diz, Mohammad
    • Advances in materials Research
    • /
    • 제1권2호
    • /
    • pp.161-168
    • /
    • 2012
  • Nanoflake composite multi core-shell $SrFe_{12}O_{19}/Fe_3O_4$/PEG/Polypyrrole was synthesized by in situ polymerization method. In this paper, the fabrication of $SrFe_{12}O_{19}$ nanoflake is as first core by solgel method. Then fabricated a shell layer from magnetic nanoparticles of $Fe_3O_4$, which synthesized by coprecipitation technique, onto the $SrFe_{12}O_{19}$ nanoflake. Polyethylene glycol (PEG) as a polymer layer and as second shell was coated onto the before core-shell. Than core-shell $SrFe_{12}O_{19}/Fe_3O_4$/PEG was used as template for the preparation of $SrFe_{12}O_{19}/Fe_3O_4$/PEG/Polypyrrole composite. Final composite has a conductive property among $4.23{\times}10^{-2}Scm^{-1}$ and magnetic property about $M_s$=2.99 emu/g. Also final composite in soluble at organic solvent such as DMF and DMSO and has a flake structure. Conductivity and magnetic property respectively determine by four-probe instrument and vibrant sample magnetometer (VSM), morphology and article size determined by FE-SEM, TEM and XRD.

키랄(S)-이부푸로펜 함유 고분자의 합성과 제조된 고분자의 분자 인식 메카니즘 (Synthesis of Molecularly Imprinted Polymers for Chiral (S)-Ibuprofen and Their Molecular Recognition Mechanism)

  • Huangfu, Fengyun;Wang, Bing;Sun, Yan
    • 폴리머
    • /
    • 제37권3호
    • /
    • pp.288-293
    • /
    • 2013
  • A group of molecularly imprinted polymers (MIPs) with specific recognition for chiral (S)-ibuprofen were successfully prepared based on hydrogen bonds, utilizing ${\alpha}$-methacrylic acid as a functional monomer. The IR analysis of MIPs showed that the blue- and red-shifted hydrogen bonds were formed between templates and functional monomers in the process of self-assembly imprinting and re-recognition, respectively. According to UV-Vis analysis, we found that the ratio of host-guest complexes between template molecule and functional monomer was 1:1. The effect of cross-linker's quantity on the polymerization was studied by transmission electron microscope (TEM). The adsorption selectivity experiments indicated that MIPs exhibited higher selectivity to (S)-ibuprofen than those to ketoprofen and (R)-ibuprofen, (S)-ibuprofen's structural analogs.

Three Dimensionally Ordered Microstructure of Polycrystalline TiO2 Ceramics with Micro/meso Porosity

  • Chang, Myung Chul
    • 한국세라믹학회지
    • /
    • 제53권2호
    • /
    • pp.227-233
    • /
    • 2016
  • In order to make a highly ordered three-dimensional porous structure of titania ceramics, porogen beads of PS [Polystyrene] and PMMA [poly(methylmetacrylate)] were prepared by emulsion polymerization using styrene monomer and methyl methacrylate monomer, respectively. The uniform beads of PS or PMMA latex were closely packed by centrifugation as a porogen template for the infiltration of titanium butoxide solution. The mixed compound of PS or PMMA with titanium butoxide was dried and the dry compacts were calcined at $450^{\circ}C-750^{\circ}C$ according to the firing schedule to prepare micro- and meso- structures of polycrystalline titania with monodispersed porosity. Inorganic frameworks composed of $TiO_2$ were formed and showed a three Dimensionally Ordered Microstructure [3DOM] of $TiO_2$ ceramics. The pulverized particles of the $TiO_2$ ceramic skeleton were characterized using XRD analysis. A monodispersed crystalline micro-structure with micro/meso porosity was observed by FE-SEM with EDX analysis. The 3DOM $TiO_2$ skeleton showed opalescent color tuning according to the direction of light.

Electrocatalytic Activity of Sulfamic Acid Doped Polyaniline Nanofiber Counter Electrode for Dye Sensitized Solar Cell

  • 조철기;;;김영순;양오봉;신형식
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.385-385
    • /
    • 2009
  • Uniform polyaniline nanofibers (PANI NFs), and chemically doped sulfamic acid(SFA) PANI NFs, synthesized via template free interfacial polymerization process, were used as new counter electrodes materials for the fabrication of the highly-efficient dyesensitized solar cells (DSSCs). The PANI NFs based fabricated DSSCs exhibited a solarto-electricity conversion efficiency of ~ 4.02% while, the SFA doped PANI NFs based DSSC demonstrated ~ 27% improvement in the solar-to-electricity conversion efficiency. The obtained solar-to-electricity conversion efficiency for SFA doped PANI NFs based DSSC was 5.47% under 100mW/$cm^2$(AM1.5). The enhancement in the conversion efficiency was due to the incorporation of SFA into the PANI NFs which resulted to the higher electrocatalytic activity for the $I^{3-}/I^-$ redox reaction.

  • PDF

Application of Polyaniline to an Enzyme-Amplified Electrochemical Immunosensor as an Electroactive Report Molecule

  • Kwon, Seong-Jung;Seo, Myung-Eun;Yang, Hae-Sik;Kim, Sang-Youl;Kwak, Ju-Hyoun
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권11호
    • /
    • pp.3103-3108
    • /
    • 2010
  • Conducting polymers (CPs) are widely used as matrixes for the entrapment of enzymes in analytical chemistry and biosensing devices. However, enzyme-catalyzed polymerization of CPs is rarely used for immunosensing due to the difficulties involved in the quantitative analysis of colloidal CPs in solution phase. In this study, an enzyme-amplified electrocatalytic immunosensor employing a CP as a redox marker has been developed. A polyanionic polymer matrix, $\alpha$-amino-$\omega$-thiol terminated poly(acrylic acid), was employed for precipitation of CP. The acrylic acid group acts as a polyanionic template. The thiol terminus of the polymer was used to produce self-assembled monolayers (SAMs) on Au electrodes and the amine terminus was employed for immobilization of biomolecules. In an enzymeamplified sandwich type immunosensor, the polyaniline (PANI) produced enzymatically is attracted by the electrostatic force of the matrix polymer. The precipitated PANI was characterized by electrochemical methods.

감자 바이러스 Y 복제유전자 cDNA로 형질전환된 황색종 담배의 저항성 특성 (Resistance Characteristics of Flue-cured Tobacco Plants Transformed with CDNA of Potato Virus Y Replicase Gene)

  • 박은경;백경희;유진삼;조혜선;강신웅;김영호
    • 한국연초학회지
    • /
    • 제19권1호
    • /
    • pp.11-17
    • /
    • 1997
  • A flue-cured tobacco variety (Nicotiana tabacum cv. Wisconsin) was used for Plant transformation with the complementary DNA (cDNA) of potato virus Y-necrosis strain (PVY-VN) replicase gone (Nb) which was synthesized through reverse-transcription Primed with oligo(dT) and Polymerization using RNase H-digested template. The cDNA was cloned into Plant expression vector Plasmid (PMBP2), and introduced into tobacco plants by co-culturing tobacco leaf disks with Agrobacterium tumefaciens LBA4404 containing the plasmid before Plant regeneration. Eight Plants, in which the inserted cDNA fragment was detected by Polymerase chain reaction (PCR), out of 70 putative transformants inserted with sense-oriented Mb cDNA showed no symptom at 3 weeks after inoculation, while the other 62 plants, and all plants with vector gone only and antisense-oriented NIb cDNA had susceptible vein-necrosis symptoms. However, only 2 of the 8 resistant plants were highly resistant, which remained symptomless up to 10 weeks after inoculation. Among the first progenies (T1) from self-fertilized seeds of the two resistant transgenic plants, less than 10 % of 71 plants appeared highly resistant (with no symptom), 70% moderately resistant (with mild symptoms on 1 - 2 leaves), and about 20% susceptible (with susceptible symptoms on 3 or more leaves) at 3 weeks after inoculation. These results suggest that the PVY resistance was inherited in the 71 generation. Key words : potato virus Y. viral replicase gene, transgenic tobacco Plants, resistance.

  • PDF

Pore Size Control of a Highly Transparent Interfacial Layer via a Polymer-assisted Approach for Dye-sensitized Solar Cells

  • Lee, Chang Soo;Lee, Jae Hun;Park, Min Su;Kim, Jong Hak
    • Korean Chemical Engineering Research
    • /
    • 제57권3호
    • /
    • pp.392-399
    • /
    • 2019
  • A highly transparent interfacial layer (HTIL) to enhance the performance of dye-sensitized solar cells (DSSCs) was prepared via a polymer-assisted (PA) approach. Poly(vinyl chloride)-graft-poly(oxyethylene methacrylate) (PVC-g-POEM) was synthesized via atom-transfer radical polymerization (ATRP) and was used as a sacrificial template. The PVC-g-POEM graft copolymer induced partial coordination of a hydrophilic titanium isopropoxide (TTIP) sol-gel solution with the POEM domain, resulting in microphase separation, and in turn, the generation of mesopores upon calcination. These phenomena were confirmed using Fourier-transform infrared (FT-IR) spectroscopy, UV-visible light transmittance spectroscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD) analysis. The DSSCs incorporating HTIL60/20 (consisting of a top layer with a pore size of 60 nm and a bottom layer with a pore size of 20 nm) exhibited the best overall conversion efficiency (6.36%) among the tested samples, which was 25.9% higher than that of a conventional blocking layer (BL). DSSC was further characterized using the Nyquist plot and incident-photon to electron conversion efficiency (IPCE) spectra.