• 제목/요약/키워드: template polymerization

검색결과 53건 처리시간 0.03초

Preparation of Al@Fe2O3 Core-Shell Composites Using Amphiphilic Graft Copolymer Template

  • Patel, Rajkumar;Kim, Sang Jin;Kim, Jin Kyu;Park, Jung Su;Kim, Jong Hak
    • Korean Chemical Engineering Research
    • /
    • 제52권2호
    • /
    • pp.209-213
    • /
    • 2014
  • A graft copolymer of poly(vinyl chloride)-g-poly(oxyethylene methacrylate) (PVC-g-POEM) was synthesized via atom transfer radical polymerization (ATRP) and used as a structure-directing agent to prepare $Al@Fe_2O_3$ core-shell nanocomposites through a sol-gel process. The amphiphilic property of PVC-g-POEM allows for good dispersion of Al particles and leads to specific interaction with iron ethoxide, a precursor of $Fe_2O_3$. Secondary bonding interaction in the sol-gel composites was characterized by Fourier transform-infrared (FT-IR) spectroscopy. The well-organized morphology of $Al@Fe_2O_3$ core-shell nanocomposites was observed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Energy dispersive X-ray (EDX) and X-ray diffraction (XRD) were used to analyze the elemental composition and crystallization structure of the composites.

Invention of Ultralow - n SiO2 Thin Films

  • Dung, Mai Xuan;Lee, June-Key;Soun, Woo-Sik;Jeong, Hyun-Dam
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.281-281
    • /
    • 2010
  • Very low refractive index (<1.4) materials have been proved to be the key factor improving the performance of various optical components, such as reflectors, filters, photonic crystals, LEDs, and solar cell. Highly porous SiO2 are logically designed for ultralow refractive index materials because of the direct relation between porosity and index of refraction. Among them, ordered macroporous SiO2 is of potential material since their theoretically low refractive index ~1.10. However, in the conventional synthesis of ordered macroporous SiO2, the time required for the crystallization of organic nanoparticles, such as polystyrene (PS), from colloidal solution into well ordered template is typical long (several days for 1 cm substrate) due to the low interaction between particles and particle - substrate. In this study, polystyrene - polyacrylic acid (PS-AA) nanoparticles synthesized by miniemulsion polymerization method have hydrophilic polyacrylic acid tails on the surface of particles which increase the interaction between particle and with substrate giving rise to the formation of PS-AA film by simply spin - coating method. Less ordered with controlled thickness films of PS-AA on silicon wafer were successfully fabricated by changing the spinning speed or concentration of colloidal solution, as confirmed by FE-SEM. Based on these template films, a series of macroporous SiO2 films whose thicknesses varied from 300nm to ~1000nm were fabricated either by conventional sol - gel infiltration or gas phase deposition followed by thermal removal of organic template. Formations of SiO2 films consist of interconnected air balls with size ~100 nm were confirmed by FE-SEM and TEM. These highly porous SiO2 show very low refractive indices (<1.18) over a wide range of wavelength (from 200 to 1000nm) as shown by SE measurement. Refraction indices of SiO2 films at 633nm reported here are of ~1.10 which, to our best knowledge, are among the lowest values having been announced.

  • PDF

Ultralow-n SiO2 Thin Films Synthesized Using Organic Nanoparticles Template

  • Dung, Mai Xuan;Lee, June-Key;Soun, Woo-Sik;Jeong, Hyun-Dam
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권12호
    • /
    • pp.3593-3599
    • /
    • 2010
  • In an original effort, this lab attempted to employ polystyrene nanoparticles as a template for the synthesis of ordered and highly porous macroporous $SiO_2$ thin films, utilizing their high combustion temperature and narrow size distribution. However, polystyrene nanoparticle thin films were not obtained due to the low interaction between individual particles and between the particle and silicon substrate. However, polystyrene-polyacrylic acid (PS-AA) colloidal particles of a core-shell structure were synthesized by a one-pot miniemulsion polymerization approach, with hydrophilic polyacrylic acid tails on the particle surface that improved interaction between individual particles and between the particle and silicon substrate. The PS-AA thin films were spin-coated in the thickness ranges from monolayer to approximately $1.0\;{\mu}m$. Using the PS-AA thin films as sacrificial templates, macroporous $SiO_2$ thin films were successfully synthesized by vapor deposition or conventional solution sol-gel infiltration methods. Inspection with field emission scanning electron microscopy (FE-SEM) showed that the macroporous $SiO_2$ thin films consist of interconnected air balls (~100 nm). Typical macroporous $SiO_2$ thin films showed ultralow refractive indices ranging from 1.098 to 1.138 at 633 nm, according to the infiltration conditions, which were confirmed by spectroscopy ellipsometry (SE) measurements. This research shows how the synthetic control of the macromolecule such as hydrophilic polystyrene nanopaticles and silicate sol precursors innovates the optical properties and processabilities for actual applications.

Three Dimensionally Ordered Microstructure of Polycrystalline Zirconia Ceramics with Micro-Porosity

  • Chang, Myung Chul
    • 한국세라믹학회지
    • /
    • 제53권1호
    • /
    • pp.50-55
    • /
    • 2016
  • In order to make a highly ordered three-dimensionally macro-porous structure of zirconia ceramics, porogen precursors PMMA beads were prepared by emulsion polymerization using acrylic monomer. The monodisperse PMMA latex beads were closely packed by centrifugation as a porogen template for the infiltration of zirconium acetate solution. The mixed compound of PMMA and zirconium acetate was dried. According to the firing schedule, dry compacts of PMMA and zirconium acetate were calcined at $475^{\circ}C$ to obtain micro-, macro-, and meso- structures of polycrystalline zirconia with monodispersed porosity. Inorganic frameworks composed of $ZrO_2$ were formed and showed a three Dimensionally Ordered Microstructure [3DOM] of $ZrO_2$ ceramics. The obtained $ZrO_2$ skeleton was calcined at $710^{\circ}C$. The 3DOM $ZrO_2$ skeleton showed color tuning in solutions such as deionized [DI] $H_2O$ and/or methanol. The monodispersed crystalline micro-structure with micro/meso porosity was observed by FE-SEM.

Mechanism, Function and Regulation of Microtubule-Dependent Microtubule Amplification in Mitosis

  • Zhu, Hui;Fang, Kayleen;Fang, Guowei
    • Molecules and Cells
    • /
    • 제27권1호
    • /
    • pp.1-3
    • /
    • 2009
  • Mitotic spindle mediates the segregation of chromosomes in the cell cycle and the proper function of the spindle is crucial to the high fidelity of chromosome segregation and to the stability of the genome. Nucleation of microtubules (MTs) from centrosomes and chromatin represents two well-characterized pathways essential for the assembly of a dynamic spindle in mitosis. Recently, we identified a third MT nucleation pathway, in which existing MTs in the spindle act as a template to promote the nucleation and polymerization of MTs, thereby efficiently amplifying MTs in the spindle. We will review here our current understanding on the molecular mechanism, the physiological function and the cell-cycle regulation of MT amplification.

Synthesis and Chiro-Optical Properties of Water Processable Conducting Poly(diphenylamine) Nanocomposites

  • Showkat, Ali Md;Lee, Kwang-Pill;Gopalan, Anantha Iyengar;Kim, Sang-Ho
    • Macromolecular Research
    • /
    • 제15권6호
    • /
    • pp.575-580
    • /
    • 2007
  • Water-soluble, chiral conducting, poly(diphenylamine) (PDPA) nanocomposites were synthesized by chemical oxidative polymerization of diphenylamine in the presence of poly(acrylic acid) (PAA) as a template and camphor sulphonic acid (CSA) as the chiral inductor, Composites were formed as stable aqueous dispersions under different experimental conditions, such as DPA to PAA molar ratios, PAA molecular weight, etc. Circular dichroism(CD) spectra of the composites indicated the induction of chirality to PDPA. Compared to simple chiral PANI, the PDPA/PAA/CSA nanocomposites showed a different Cotton effect. The appearance of a CD band in the composite was complimentary to the bisignate, exciton-coupled band in the UV-Visible spectrum. FTIR spectra indicated the intimate mixing of PDPA and PAA.

Phenol/formaldehyde-derived macroporous carbon foams prepared with aprotic ionic liquid as liquid template

  • Byun, Hae-Bong;Nam, Gi-Min;Rhym, Young-Mok;Shim, Sang-Eun
    • Carbon letters
    • /
    • 제13권2호
    • /
    • pp.94-98
    • /
    • 2012
  • Herein, macroporous carbon foams were successfully prepared with phenol and formaldehyde as carbon precursors and an ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate ($BMIPF_6$), as a pore generator by employing a polymerization-induced phase separation method. During the polycondensation reaction of phenol and formaldehyde, $BMIPF_6$ forms a clustered structure which in turn yields macropores upon carbonization. The morphology, pore structure, electrical conductivity of carbon foams were investigated in terms of the amount of the ionic liquid. The as-prepared macroporous carbon foams had around 100-150 ${\mu}m$-sized pores. More importantly, the electrical conductivity of the carbon foams was linearly improved by the addition of $BMIPF_6$. To the best of the author's knowledge, this is the first result reporting the possibility of the use of an ionic liquid to prepare porous carbon materials.

PMMA 고분자 입자를 템플릿으로 이용한 실리카 중공체의 제조 (Synthesis of Hollow Silica Using PMMA Particle as a Template)

  • 황하수;조계민;박인
    • 공업화학
    • /
    • 제21권3호
    • /
    • pp.353-355
    • /
    • 2010
  • 양이온성의 2,2'-azobis(2-methylpropionamidine) (AIBA) 개시제를 이용한 methylmethacrylate (MMA)의 무유화제 에멀전 중합을 통해 polymethylmethacrylate (PMMA) 입자를 합성하였다. 스퇴버 방법을 이용하여 양이온성의 PMMA 입자 표면에 실리카를 코팅하였다. 음전하의 실리카 전구체는 양이온성의 PMMA 입자 표면과의 정전기적 인력에 의해 코팅된다. 실리카 코팅 과정 중에 PMMA 입자가 용해되어 후처리 없이 실리카 중공체를 얻을 수 있었다.

Drug Release from Ph-sensitive Interpenetrating Polymer Net-works Hydrogel Based on Poly(ethylene glycol) Macromer and Poly (acrylic acid)Prepared by UV Cured Method

  • Kim, In-Sook;Kim, Sung-Ho;Cho, Chong-Su
    • Archives of Pharmacal Research
    • /
    • 제19권1호
    • /
    • pp.18-22
    • /
    • 1996
  • Acrylate-terminated poly (ethylene glycol) (PEG) macromer was prepared by the reaction of PEG with acryloyl chloride. Photopolymerization of PEG macromer resulted in the formation of cross-linked PEG network. Interpenetrating polymer networks (IPNs) based on PEG and poly(acrylic acid) (PAA) was obtained via template polymerization of AA to the PEG network by UV curing. The swelling degree of the IPNs hydrogel increased with an increase of pH value due to the association-dissociation between carboxylic acid of PAA and either of PEG through hydrogen bounding. The swelling-deswelling behavior proceeded reversibly for the IPNs upon changing pH. Release of indomethacin from the IPNs demonstrated "on-off" regulation with pH fluctuation.

  • PDF

선택적 분리를 위한 분자 각인 고분자의 설계 및 응용 (Design and Applications of Molecularly Imprinted Polymers for Selective Separations)

  • 정수환;오창엽;서정일;박중곤
    • KSBB Journal
    • /
    • 제16권2호
    • /
    • pp.115-122
    • /
    • 2001
  • Molecular imprinting has now been established as a technique which allows the creation of tailor-made binding sites for many classes of compounds. MIPs were prepared by covalent and non-covalent chemical bonding systems, by interactions between functional monomer and template. The shape of MIP is divided to particle and membrane. MIP membranes can be prepared by surface imprinting, in-situ polymerization, wet phase inversion and the dry phase inversion method. MIPs have been mainly used for analytical separation and biosensor systems to separate and detect chiral compounds and materials with similar structures. However the application of MIP by the chemical industries is still in its infancy stages. This review summarizes the preparative characteristics and applications of MIP with respect to chiral separations and biosensors.

  • PDF