Synthesis and Chiro-Optical Properties of Water Processable Conducting Poly(diphenylamine) Nanocomposites

  • Published : 2007.10.31

Abstract

Water-soluble, chiral conducting, poly(diphenylamine) (PDPA) nanocomposites were synthesized by chemical oxidative polymerization of diphenylamine in the presence of poly(acrylic acid) (PAA) as a template and camphor sulphonic acid (CSA) as the chiral inductor, Composites were formed as stable aqueous dispersions under different experimental conditions, such as DPA to PAA molar ratios, PAA molecular weight, etc. Circular dichroism(CD) spectra of the composites indicated the induction of chirality to PDPA. Compared to simple chiral PANI, the PDPA/PAA/CSA nanocomposites showed a different Cotton effect. The appearance of a CD band in the composite was complimentary to the bisignate, exciton-coupled band in the UV-Visible spectrum. FTIR spectra indicated the intimate mixing of PDPA and PAA.

Keywords

References

  1. D. B. Amabilino and J. F. Stoddart, Chem. Rev., 95, 2725 (1995)
  2. L. Pu, Acta Polym., 48, 116 (1997) https://doi.org/10.1002/actp.1997.010480402
  3. Y. Okamoto and E. Yashima. Angew. Chem. Int. Ed. Engl., 37, 1922 (1998) https://doi.org/10.1002/(SICI)1521-3773(19980803)37:13/14<1922::AID-ANIE1922>3.0.CO;2-#
  4. M. M. Green, Topics in Stereochemistry, Materials- Chirality, John Wiley & Sons Inc., 2003, Vol. 24
  5. K. Tang, M. M. Green, K. S. Cheon, J. V. Selinger, and B. A. Garetz, J. Am. Chem. Soc., 125, 7313 (2003) https://doi.org/10.1021/ja030065c
  6. E. Yashima, T. Matsushima, and Y. Okamoto, J. Am. Chem. Soc., 117, 11596 (]995)
  7. E. Yashima, T. Nimura, T. Matsushima, and Y. Okamoto, J. Am. Chem. Soc., 118, 9800 (]996)
  8. E. Yashima, T. Matsushima, and Y. Okamoto, J. Am. Chem. Soc., 119, 6345 (] 997)
  9. B. J. Rault, E. Raoult, H. J. Tahri, D. H. Le, and J. Simonet, Electrochim Acta, 44, 3409 (1999) https://doi.org/10.1016/S0013-4686(98)00204-7
  10. J. C. Moutet, E. Saintaman, F. Tranvan, P. Angibeaud, and J. P. Utille, Adv. Mater., 4, 511 (]992)
  11. X. Chen and Y. Okamoto, Macromol. Res., 15, 134 (2007) https://doi.org/10.1007/BF03218764
  12. J. Jang, J. Ha, and S. Kim, Macromol. Res., 15, 154 (2007) https://doi.org/10.1007/BF03218767
  13. J. Jang, J. Ha, and S. Kim, Macromol. Res., 15, 154 (2007) https://doi.org/10.1007/BF03218767
  14. J. Y. Kwon, E. Y. Kim, and H. D. Kim, Macromol. Res., 12, 303 (2004) https://doi.org/10.1007/BF03218404
  15. S. A. Ashraf, L. A. P. KaneMaguire, M. R. Majidi, S. G Pyne, and G. G. Wallace, Polymer, 38, 2627 (1997)
  16. M. R. Majidi, L. A. P. Kane-Maguire, and G. G. Wallace, Polymer, 36, 3597 (1995)
  17. M. R. Majidi, L. A. P. Kane-Maguire, and G. G. Wallace, Polymer, 35, 3113 (1994)
  18. V. Aboutanos, J. N. Barisci, L. A. P. Kane-Maguire, and G. G. Wallace, Synth. Met., 106, 89 (1999) https://doi.org/10.1016/S0379-6779(99)00111-3
  19. E. V. Strounina, L. A. P. Kane-Maguire, and G. G. Wallace, Synth. Met., 106, 129 (1999) https://doi.org/10.1016/S0379-6779(99)00121-6
  20. R. Nagarajan, W. Liu, J. Kumar, S. K. Tripathy, F. Bruno, L. A. Samuelson, Macromolecules, 34, 3921 (2001) https://doi.org/10.1021/ma002404h
  21. I. D. Norris, L. A. P. Kane-Maguire, and G. G. Wallace, Macromolecules, 33, 3237 (2000)
  22. I. D. Norris, L. A. P. Kane-Maguire, G. G. Wallace, and L. H. C. Mattoso, Aust. J. Chem., 53, 89 (2000)
  23. P. A. McCarthy, J. Y. Huang, S. C. Yang, and H. L. Wang, Langmuir, 18, 259 (2002)
  24. L. Wenguang, A. M. Patrick, L. Dingguo, H. Jianyu, C. Y. Sze, and L. W. Hsing, Macromolecules, 35, 9975 (2002) https://doi.org/10.1021/ma011278u
  25. L. Y. Guo and K. Noriyuki, Macromolecules, 36, 7939 (2003) https://doi.org/10.1021/ma030087j
  26. J. Guay, R. Paynter, and L. H. Dao, Macromolecules, 23, 3598 (1990)
  27. C. Y. Chung, T. C. Wen, and A. Gopalan, Electrochimica Acta, 47, 423 (2001) https://doi.org/10.1016/S0013-4686(01)00580-1
  28. V. Rajendran, A. Gopalan, T. Vasudevan, and T. C. Wen, J. Electrochem. Soc., 147, 3014 (2000)
  29. F. Hua and E. Ruckenstein, Langmuir, 20, 3954 (2004) https://doi.org/10.1021/la036124h
  30. F. Hua and E. Ruckenstein, Macromolecules, 36, 9971 (2003) https://doi.org/10.1021/ma030431c
  31. M. Thanneermalai, T. Jeyaraman, C. Sivakumar, A. Gopalan, T. Vasudevana, and T. C. Wen, Spectrochimica Acta Part A, 59, 1937 (2003) https://doi.org/10.1016/S1386-1425(02)00441-9
  32. P. Santhosh, M. Sankarasubramanian, M. Thanneermalai, A. Gopalan, and T. Vasudevan, Mater. Chem. Phys., 85, 316 (2004) https://doi.org/10.1016/j.matchemphys.2004.01.021
  33. Y. T. Tasi, T. C. Wen, and A. Gopalan, Sens Actuators B, B96, 646 (2003)
  34. P. Santhosh, T. Vasudevan, and A. Gopalan, Spectrochim Acta A, 59, 1427 (2003) https://doi.org/10.1016/S1386-1425(02)00284-6
  35. M. S. Wu, T. C. Wen, and A. Gopalan, J. Electrochem. Soc., 148, D65 (2001)
  36. E. E. Havuiga, M. M. Bouman, E. W. Meiger, A. Pop, and M. M. Simenon, Synth. Met., 66, 93 (1994) https://doi.org/10.1016/0379-6779(94)90168-6
  37. I. D. Norris, L. A. P. Kane-Maguire, and G. G. Wallace, Macromolecules, 31, 6529 (1998)
  38. K. A. Piaso, S. Kaneko, K. Sakamato, H. Shirakawa, and M. Kyotami, Science, 27, 1683 (1998) https://doi.org/10.1126/science.27.704.998
  39. K. Maeda, K. Morino, Y. Okamoto, T. Sato, and E. Yashima, J. Am. Chem. Soc., 126, 4329 (2004) https://doi.org/10.1021/ja0318378
  40. M. M. Green, N. C. Peterson, T. Sato, A. Teramoto, R. Cook, and S. Lifson, Science, 268, 1860 (1995)
  41. T. Nakano and Y. Okamoto, Chem. Rev., 101, 4013 (2001) https://doi.org/10.1021/cr990410+
  42. J. J. L. M. Cornelissen, A. E. Rowan, R. J. M. Nolte, and N. A. J. M. Sommerdijk, Chem. Rev., 101, 4039 (2001) https://doi.org/10.1021/cr990410+
  43. K. Shinohara, S. Yasuda, G. Kato, M. Fujita, and H. Shigekawa, J. Am. Chem. Soc., 123, 3619 (2001) https://doi.org/10.1021/ja002793v
  44. Y. Okamoto, M. Matsuda, T. Nakano, and E. Yashima, J. Polym. Sci.; Part A: Polym. Chem., 32, 309 (1994)
  45. K. Maeda, M. Matsuda, T. Nakano, and Y. Okamoto, Polym. J., 27, 141 (1995) https://doi.org/10.1295/polymj.27.141
  46. M. Muller and R. Zentel, Macromolecules, 29, 1609 (1996)
  47. M. M. Andreola, C. Munoz, B. Reidy, and M. P. Zelo, J. Am. Chem. Soc., 110, 4063 (1988)
  48. M. Inouye, M. Waki, and H. Abe, J. Am. Chem. Soc., 126, 2022 (2004) https://doi.org/10.1021/ja039371g
  49. M. Ishikawa, K. Maeda, and E. Yashima, J. Am. Chem. Soc., 124, 7448 (2002)
  50. D. Berthier, T. Buffeteau, J. M. Leger, R. Oda, and I. Hue, J. Am. Chem. Soc., 124, 13486 (2002)
  51. D. M. Tigellar, W. Lee, K. A. Wates, A. J. Saprigin, V. N. Prigodin, X. Cao, L. A. Nafie, M. S. Platz, and A. Epstein, J. Chem. Mater., 14, 1430 (2002)
  52. J. Huang, V. M. Egan, H. Guo, J. Y. Yoon, A. L. Briseno, I. E. Rauda, R. L. Garrel, C. M. Knobler, F. Zhou, and R. B. Kanee, Adv. Mater., 15, 1158 (2003) https://doi.org/10.1002/adma.200304835
  53. A. Aboutanos, J. N. Barisci, L. A. P. Kane-Maguire, and G. G. Wallace, Synth. Met., 106, 89 (1999) https://doi.org/10.1016/S0379-6779(99)00111-3
  54. S. J. Su and N. Kuramato, Macromolecules, 34, 7269 (2001) https://doi.org/10.1021/ma002404h
  55. S. J. Su and N. Kumaranto, Chem. Mater., 34, 7249 (2001)
  56. V. S. Ekaterina, L. A. P. Kane-Maguire, and G. G. Wallace, Synth. Met., 106, 129 (1999) https://doi.org/10.1016/S0379-6779(99)00121-6
  57. K. A. Runcie and R. J. K. A. Taylor, Macromolecules, 3, 3237 (2001)
  58. G. L. Yuan and N. Kuramato, Macromolecules, 35, 9773 (2002) https://doi.org/10.1021/ma011278u
  59. A. Pud, N. Ogurtsov, A. Korzhenko, and L. G. Shapova, Prog. Polym. Sci., 28, 1701 (2003) https://doi.org/10.1016/j.progpolymsci.2003.08.001
  60. N. Gospodinova and L. Terlemezyan, Prog. Polym. Sci., 23, 1443 (1998) https://doi.org/10.1016/S0079-6700(98)00008-2
  61. W. S. Huang and A. G. MacDiarmid, Polymer, 34, 1833 (1993)