• Title/Summary/Keyword: template matching

Search Result 393, Processing Time 0.027 seconds

An Edge Detection Method by Using Fuzzy 2-Mean Classification and Template Matching

  • Kang, C.C.;Lee, P.J.;Wang, W.J.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1315-1318
    • /
    • 2004
  • Based on fuzzy 2-mean classification and template matching method, we propose a new algorithm to detect the edges of an image. In the algorithm, fuzzy 2-mean classification can classify all pixels in the mask into two clusters whatever the mask in the dark or light region; and template matching not only determines the edge's direction, but also thins the detected edge by a set of inference rules and, by the way, reduces the impulse noises.

  • PDF

Vehicle License Plate Recognition System Using Image Binarization and Template Matching (영상 이진화와 템플릿 매칭을 이용한 자동차 번호판 인식 시스템)

  • Oh, Soojin;Park, Chun-Su
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.2
    • /
    • pp.7-12
    • /
    • 2014
  • A vehicle license plate includes the most important information for recognition and classification of the vehicle. In this paper, we propose a vehicle license plate recognition system using image binarization and template matching. In the proposed system, an image of the vehicle license plate is converted into a gray scale image and the gray image undergoes the binarization process. Finally, the numbers on the plate are extracted from the binary image using the template matching algorithm.

Automated Detection of Pulmonary Nodules in Chest Radiography Using Template Matching (단순흉부영상의 Template-Matching을 이용한 폐 결절 자동 추출)

  • 류지연;이경일;오명진;장정란;이배호
    • Proceedings of the IEEK Conference
    • /
    • 2002.06d
    • /
    • pp.335-338
    • /
    • 2002
  • This paper proposes some technical approaches for automatic detection of pulmonary nodules in chest X-ray images. We applied threshold technique for the lung field segmentation and extended the lung field by using morphological methods. A template matching technique was employed for automatic detecting nodules in lung area. Genetic algorithm(GA) was used in template matching(TM) to select a matched image from various reference patterns(simulated typical nodules). We eliminated the false-positive candidates by using histograms and contrasts. We used standard databases published by Japanese Society of Radiological Technology (JSRT) for correct results. Also we employ two-dimensional Gaussian distribution for some reference images because the shadow of lung nodules in radiogram generally shows the distributions. Nodules of about 89% were correctly detected by our scheme. The simulation results show that it is an effective method to indicate lesions on chest radiograms.

  • PDF

Rotation-Invariant Pattern Recognition and Estimating a Rotation Angle using Genetic Algorithm (유전자 알고리즘을 이용한 Rotation-Invariant 패턴인식과 Pattern간의 Angle 추측)

  • Kim, Yong-Hun;Kim, Jin-Jung;Choi, Youn-Ho;Chung, Duck-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.2821-2823
    • /
    • 1999
  • In this paper we proposed an algorithm for rotation-invariant pattern recognition and rotated angle estimation between two patterns by employing selective template matching. Generally template matching has been used in determining the location of pattern but template matching requires a number of calculating correlation. To reduce the number of correlation we used steady-state genetic algorithm which is effective in optimization problem. We apply this method to distinguish specific pattern from similar coin patterns and estimate rotated angle between patterns. Our result leads us to the conclusion that proposed method performed faster than classical template matching

  • PDF

An Efficient Partial Matching System and Region-based Representation for 2D Images (2D 영상의 효과적인 부분 정합 시스템과 영역기반 영상 표현)

  • Kim, Seon-Jong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.9
    • /
    • pp.868-874
    • /
    • 2007
  • This paper proposes an efficient partial matching system and representation by using a region-based method for 2D image, and we applied to an extraction of the ROI(Region of Interest) according to its matching score. The matching templates consist of the global pattern and the local one. The global pattern can make it by using region-based relation between center region and its rest regions in an object. And, the local pattern can be obtained appling to the same method as global, except relation between objects. As the templates can be normalized, we use this templates for extraction of ROI with invariant to size and position. And, our system operates only one try to match, due to normalizing of region size. To use our system for searching and examining if it's the ROI by evaluating the matching function, at first, we are searching to find candidate regions with the global template. Then, we try to find the ROI among the candidates, and it works this time by using the local template. We experimented to the binary and the color image respectively, they showed that the proposed system can be used efficiently for representing of the template and the useful applications, such as partially retrievals of 2D image.

Effective Sonar Grid map Matching for Topological Place Recognition (위상학적 공간 인식을 위한 효과적인 초음파 격자 지도 매칭 기법 개발)

  • Choi, Jin-Woo;Choi, Min-Yong;Chung, Wan-Kyun
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.3
    • /
    • pp.247-254
    • /
    • 2011
  • This paper presents a method of sonar grid map matching for topological place recognition. The proposed method provides an effective rotation invariant grid map matching method. A template grid map is firstly extracted for reliable grid map matching by filtering noisy data in local grid map. Using the template grid map, the rotation invariant grid map matching is performed by Ring Projection Transformation. The rotation invariant grid map matching selects candidate locations which are regarded as representative point for each node. Then, the topological place recognition is achieved by calculating matching probability based on the candidate location. The matching probability is acquired by using both rotation invariant grid map matching and the matching of distance and angle vectors. The proposed method can provide a successful matching even under rotation changes between grid maps. Moreover, the matching probability gives a reliable result for topological place recognition. The performance of the proposed method is verified by experimental results in a real home environment.

The Effect of the Number of Vibration Modes on the Application of the Location Template Matching(LTM) Method (Location Template Matching(LTM) 방법을 적용함에 있어서 진동 모드 수의 영향)

  • Shin, Kihong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.2
    • /
    • pp.172-178
    • /
    • 2016
  • The location template matching (LTM) method is a technique of identifying an impact location on a structure, and is often applied to structural health monitoring and large scale human-computer interface (HCI) systems. The LTM method utilizes a certain measure of similarity between two time signals. The correlation coefficient is most widely used for this purpose, and the group delay based method is recently proposed to improve the accuracy of finding the best matching pair of signals. In practice, one of key essential consideration for implementing the LTM method is to guarantee that a sufficient number of vibration modes must be contained in the measured signal, and yet the lower sampling rate is needed for a real-time implementation. In this paper, the properties of correlation coefficient and group delay with respect to the number of vibration modes are investigated. A few important results are obtained through extensive computer simulations and experiments. If the number of vibration modes contained in the measured signal is more than four it is sufficient for the correlation based LTM method, while the group delay based LTM method requires smaller number of vibration modes.

Development of an Automatic Visual Inspection System Using Simbology Patterns (심볼로지 패턴의 특징 정보를 이용한 자동 시각 검사시스템 개발)

  • Hwang, Jung-Mock;Jang, Dong-Sik
    • IE interfaces
    • /
    • v.10 no.3
    • /
    • pp.133-143
    • /
    • 1997
  • In this paper, an improved method is developed for automatic inspection system using simbology patterns. The developed method uses the two previously developed matching methods the template maching method and the feature matching method. The template matching method is very sensitive to variations of target images such as translation and rotation of objects. On the other hand, the feature matching method doesn't extract proper features in some types of symbology patterns. The proposed method shows the improvement of precision in recognition of defects and flexibility of different types of symbology patterns.

  • PDF

A new template matching algorithm and its ASIC chip implementation (Template matching을 위한 새로운 알고리즘 및 ASIC 칩 구현)

  • 서승완;선우명훈
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.1
    • /
    • pp.15-24
    • /
    • 1998
  • This paper proposes a new template matching algorithm and its chip design. The CC and SAD algorithms require the massive amount of computation. Hence, several algorithms using quantization schemes have been proposed to reduce the amount of computation and its hardware cost. the proposed algorithm called the EMPPM improves at least 22% of the noise margin compared with the MPPM algorithm. In addition, the proposed architecture can reduce the gate count by more than 60% of that used in the SAD algorithm without usig quantization schemes and 28% of the MPPM algorithm. The VHDL models have been simulated by using the CADANCETEX>$^{TM}$ and logic synthesis has been performed by using the SYNOPSYSTEX>$^{TM}$ with $0.6\mu\textrm{m}$ SOG(sea-of-gate) cell library. The implemented chip consists of 35,829 gates, operates at 100 MHz (worst case 53 MHz) and performs the template maching with the speed of 200 Mpixels/sec.

  • PDF

Performance Analysis of Automatic Target Recognition Using Simulated SAR Image (표적 SAR 시뮬레이션 영상을 이용한 식별 성능 분석)

  • Lee, Sumi;Lee, Yun-Kyung;Kim, Sang-Wan
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.3
    • /
    • pp.283-298
    • /
    • 2022
  • As Synthetic Aperture Radar (SAR) image can be acquired regardless of the weather and day or night, it is highly recommended to be used for Automatic Target Recognition (ATR) in the fields of surveillance, reconnaissance, and national security. However, there are some limitations in terms of cost and operation to build various and vast amounts of target images for the SAR-ATR system. Recently, interest in the development of an ATR system based on simulated SAR images using a target model is increasing. Attributed Scattering Center (ASC) matching and template matching mainly used in SAR-ATR are applied to target classification. The method based on ASC matching was developed by World View Vector (WVV) feature reconstruction and Weighted Bipartite Graph Matching (WBGM). The template matching was carried out by calculating the correlation coefficient between two simulated images reconstructed with adjacent points to each other. For the performance analysis of the two proposed methods, the Synthetic and Measured Paired Labeled Experiment (SAMPLE) dataset was used, which has been recently published by the U.S. Defense Advanced Research Projects Agency (DARPA). We conducted experiments under standard operating conditions, partial target occlusion, and random occlusion. The performance of the ASC matching is generally superior to that of the template matching. Under the standard operating condition, the average recognition rate of the ASC matching is 85.1%, and the rate of the template matching is 74.4%. Also, the ASC matching has less performance variation across 10 targets. The ASC matching performed about 10% higher than the template matching according to the amount of target partial occlusion, and even with 60% random occlusion, the recognition rate was 73.4%.