• 제목/요약/키워드: tempering condition

검색결과 47건 처리시간 0.02초

표면처리 및 윤활제에 따른 열간 단조 금형의 수명 평가 (Die Life Estimation of Hot Forging for Surface Treatment and Lubricants)

  • 이현철;김병민;김광호
    • 한국정밀공학회지
    • /
    • 제20권7호
    • /
    • pp.26-35
    • /
    • 2003
  • This study explains the effects of lubricant and surface treatment on hot forging die life. The mechanical and thermal load, and thermal softening which is happened by the high temperature of die, in hot and warm forging, cause die wear, heat checking and plastic deformation, etc. This study is fur the effects of solid lubricants and surface treatment condition for hot forging die. Because cooling effect and low friction are essential to the long life of dies, optimal surface treatment and lubricant are very important to improve die life for hot forging process. The main factors, which affect die hardness and heat transfer, are surface treatments and lubricants, which are related to thermal diffusion coefficient and heat transfer coefficient, etc. For verifying these effects, experiments are performed for hot ring compression test and heat transfer coefficient in various conditions as like different initial billet temperatures and different loads. The effects of lubricant and surface treatment for hot forging die life are explained by their thermal characteristics. The new developed technique in this study for predicting tool life can give more feasible means to improve the tool life in hot forging process.

단조품의 등온 어닐링에 따른 미세조직 변화 (The Effect of Isothermal Annealing on Microstructure of Forged Parts)

  • 김동배;이종훈
    • 열처리공학회지
    • /
    • 제13권5호
    • /
    • pp.303-308
    • /
    • 2000
  • The ring gears of automobile parts are manufactured generally process chart of which is as follows : forging ${\rightarrow}$ annealing or normalizing ${\rightarrow}$ rough machining ${\rightarrow}$ hardening(Quenching-Tempering or carburizing process) ${\rightarrow}$ finish machining. Isothermal annealing process after forging is most effective in the side of improvment of machinability. On this study we selected two kinds of steel;SCM415, SCM435 of most universal and investigated microstructures to find out most suitable condition of heat treatment in proportion continuous cooling and isothermal annealing. As the cooling rate is $5^{\circ}C$ per minute in continuous cooling process, martensite and bainite are coexisted with ferrite and pearlite in SCM435 steel. If the cooling rate is slower than $5^{\circ}C$ per minute, microstructure were only ferrite and pearlite but formation of band structure can't be avoid. On the other hand, microstructure is only ferrite and pearlite regardless of cooling rate because carbon content of SCM415 steel is low. Moreover formation of band structure isn't exposed by faster cooling rate. Most optimal temperature of the isothermal annealing is from $650^{\circ}C$ to $680^{\circ}C$ in SCM435 steel. When holding time is 60 minute with $650^{\circ}C$, the identical ferrite and pearlite microstructures can be obtained.

  • PDF

스프링강의 피로강도에 미치는 압축잔유응력의 영향 (The effect of compress residual stresses for fatigue strength of Spring Steel)

  • 박경동;정찬기
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.338-343
    • /
    • 2001
  • Recently the steel parts used at automobiles are required to be used under high stress more than ever before in need of the weight down. To achieve this requirement of a high strength steel, it must be necessary to decrease inclusion content and surface defect as like decarburization, surface roughness etc., In this study, the surface conditions are measured to know the influence on fatigue properties by two cases of shot peening of two-stage shot peening and single-stage shot peening. And for this study, two kinds of spring steel(SAE 9254, DIN 50CrV4) are made. This study shows the outstanding improvement of fatigue properties at the case of two-stage shot peening in the rotary bending fatigue test and this is assumed to be from (1) on low stress condition, the single stage shot peening is not affected by nonmetallic inclusion under metal. (2) it is possible that the two-stage shot peening increases the fatigue life and the high stress, but, that is affected by nonmetallic inclusion under metal. (3) so far, beeasily 50CrV4 have made high stress. But, results also show fatigue failures originated at inclusion near surface, and this inclusion type is turned out to be a alumina of high hardness.

  • PDF

Sp-Creep 시험에 의한 고온 크리프 특성 평가 기술 개발(ll) - 보일러 헤더 - (Development of Evaluation Technique of High Temperature Creep Characteristics by Small Punch-Creep Test Method (ll) - Boiler Header -)

  • 백승세;이동환;하정수;유효선
    • 대한기계학회논문집A
    • /
    • 제26권1호
    • /
    • pp.55-60
    • /
    • 2002
  • For the development of a new creep test technique, the availability of SP-Creep test is discussed for 1Cr-0.5Mo boiler header material. And some results are also compared with those of 2.25Cr- 1Mo steel which widely uses as boiler superheater tube. The results can be summarized as follows. The load exponents(n) obtained by SP-Creep test for 1Cr-0.5Mo steel are decreased with increasing creep temperature and the values are 15.67, 13.89, and 17.13 at 550$^{circ}C$ ,575$^{circ}C$ and 600$^{circ}C$, respectively. The temperature dependence of the load exponent is given by n = 107.19 - 0.1108T. This reason that load exponents show the extensive range of 10∼16 is attributed to the fine carbide such as M$_{23}$C$_{6}$ in lath tempered martensitic structures. At the same creep condition, the secondary creep rate of 1Cr-0.5Mo steel is lower than the 2.25Cr-1Mo steel1 due to the strengthening microstructure composed by normalizing and tempering treatments. Through a SEM observation, it can be summarized that the primary, secondary, and tertiary creep regions of SP-Creep specimen are corresponding to plastic bending, plastic membrane stretching, and plastic instability regions among the deformation behavior of four steps in SP test, respectively.y.

TP304계 고질소 스테인레스강의 단조특성과 냉간압연 모사 (Forged Product Characteristic and Cold Rolling Simulation for High-Nitrogen Stainless Steel (HNS))

  • 이명열;이종욱;김병구;김영득;신종호
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.310-313
    • /
    • 2009
  • 오스테나이트계 고질소 스테인레스강 4 가지 후보강종인 HNS C1, C2, C3, C4에 대해 질소함량, 가압조건 따른 단조재와 온도 및 동일한 가압조건에서 Ni 합금원소 첨가유무에 따른 용체화 처리재(HNS C1, C3)의 물성평가와 실제 냉연 공정의 pass schedule 검증을 위한 모사실험을 통해 다음과 같이 요약 하였다. 1) 가압증가에 따른 질소함량의 증가로 강도 및 경도가 동시 상승하며, 결정립의 미세화 및 기계적 쌍정 발생이 많았다. 동일한 가압조건에서 Ni 첨가된 HNS C3가 Ni 미첨가한 HNS C1 보다 강도-연성 조합평가에서 열/냉간 가공성 등의 특성이 우수하였다. 2) 고질소강 스테인레스강의 적정한 용체화 처리온도 범위는 상용화된 AIS1304와 유사한 $1050^{\circ}C{\sim}1100^{\circ}C$이며, 용체화처리 후냉각방법의 변경(수냉과 공냉)에 따른 경도의 편차는 없었다. 냉연 pass schedule 검증을 위한 모사실험에서 초기 압연의 최적조건은 roll 속도 5mpm, pass당 압연율 $15{\sim}17%$였다.

  • PDF

Cu-7Al-2.5Si 합금의 기계적 및 내식특성에 미치는 열처리 효과 (Effect of the Heat Treatment on the Mechanical Property and Corrosion Resistance of CU - 7Al - 2.5Si Alloy)

  • 이성열;원종필;박동현;문경만;이명훈;정진아;백태실
    • Corrosion Science and Technology
    • /
    • 제13권1호
    • /
    • pp.28-35
    • /
    • 2014
  • Recently, the fuel oil of diesel engines of marine ships has been increasingly changed to heavy oil of low quality as the oil price is getting higher and higher. Therefore, the spiral gear attached at the motor of the oil purifier which plays an important role to purify the heavy oil is also easy to expose at severe environmental condition due to the purification of the heavy oil in higher temperature. Thus, the material of the spiral gear requires a better mechanical strength, wear and corrosion resistance. In this study, the heat treatment(tempering) with various holding time at temperature of $500^{\circ}C$ was carried out to the alloy of Cu-7Al-2.5Si as centrifugal casting, and the properties of both hardness and corrosion resistance with and without heat treatment were investigated with observation of the microstructure and with electrochemical methods, such as measurement of corrosion potential, cathodic and anodic polarization curves, cyclic voltammogram, and a.c. impedance. in natural seawater solution. The ${\alpha}$, ${\beta}^{\prime}$ and ${\gamma}_2$ phases were observed in the material in spite of no heat treatment due to quenching effect of a spin mold. However, their phases, that is, ${\beta}^{\prime}$ and ${\gamma}_2$ phases decreased gradually with increasing the holding time at a constant temperature of $500^{\circ}C$. The hardness more or less decreased with heat treatment, however its corrosion resistance was improved with the heat treatment. Furthermore, the longer holding time, the better corrosion resistance. In addition, when the holding time was 48hrs, its corrosion current density showed the lowest value. The pattern of corroded surface was nearly similar to that of the pitting corrosion, and this morphology was greatly observed in the case of no heat treatment. It is considered that ${\gamma}_2$ phase at the grain boundary was corroded preferentially as an anode. However, the pattern of general corrosion exhibited increasingly due to decreasing the ${\gamma}_2$ phase with heat treatment. Consequently, it is suggested that the corrosion resistance of Cu-7Al-2.5Si alloy can be improved with the heat treatment as a holding time for 48 hrs at $500^{\circ}C$.

Effects of Alloying Elements and Heat-Treatments on Abrasion Wear Behavior of High Alloyed White Cast Iron

  • Yu, Sung-Kon
    • 한국주조공학회지
    • /
    • 제20권2호
    • /
    • pp.104-109
    • /
    • 2000
  • Three different white cast irons alloyed with Cr, V, Mo and W were prepared in order to study their abrasion wear behavior in as-cast and heat-treated conditions. The specimens were produced using a 15㎏-capacity high frequency induction furnace. Melts were super-heated to $1600^{\circ}C$, and poured at $1550^{\circ}C$ into Y-block pepset molds. Three combinations of the alloying elements were selected so as to obtain the different types of carbides : 3%C-10%Cr-5%Mo-5%W(alloy No. 1: $M_7C_3$ and $M_6C$), 3%C -10%V-5%Mo-5%W(alloy No. 2: MC and $M_2C$) and 3%C-17%Cr-3%V(alloy No. 3: $M_7C_3$ only). A scratching type abrasion test was carried out in the states of as-cast(AS), homogenizing(AH), air-hardening(AHF) and tempering(AHFT). First of all, the as-cast specimens were homogenized at $950^{\circ}C$ for 5h under the vacuum atmosphere. Then, they were austenitized at $1050^{\circ}C$ for 2h and followed by air-hardening in air. The air-hardened specimens were tempered at $300^{\circ}C$ for 3h. 1 ㎏ load was applied in order to contact the specimen with abrading wheel which was wound by 120 mesh SiC paper. The wear loss of the test piece(dimension: $50{\times}50{\times}5$ mm) was measured after one cycle of wear test and this procedure was repeated up to 8 cycles. In all the specimens, the abrasion wear loss was found to decrease in the order of AH, AS, AHFT and AHF states. Abrasion wear loss was lowest in the alloy No.2 and highest in the alloy No.1 except for the as-cast and homogenized condition in which the alloy No.3 showed the highest abrasion wear loss. The lowest abrasion wear loss of the alloy No.2 could be attributed to the fact that it contained primary and eutectic MC carbides, and eutectic $M_2C$ carbide with extremely high hardness. The matrix of each specimen was fully pearlitic in the as-cast state but it was transformed to martensite, tempered martensite and austenite depending upon the type of heat-treatment. From these results, it becomes clear that MC carbide is a significant phase to improve the abrasion wear resistance.

  • PDF