• Title/Summary/Keyword: temperature-time profile

Search Result 273, Processing Time 0.031 seconds

Design of Aerosol Generator for Inhalation Toxicology Study of Lead and Evaluation with Real Time Monitoring (납의 흡입독성 연구를 위한 에어로졸 발생장치의 고안 및 실시간 모니터링을 이용한 성능평가)

  • Jeung Jae Yeal;Kim Jung Man;Kim Tae Hyeung;Chong Myoung Soo;Ko Kwang Jae;Kim Sang Duck;Kang Sung Ho;Song Young Sun;Lee Ki Nam
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.2
    • /
    • pp.373-379
    • /
    • 2002
  • This paper was the design of aerosol generator for inhalation toxicology study of lead and evaluation with real time monitoring, and applied several engineering methodology to classical aerosol generator to cope with it's disadvantages. According to the testing conditions, source temperature 50℃ and inlet-duct band heater temperature 150℃, aerosol generation results for sodium chloride and lead acetate were as followings: CPM(Count Per Minute) for Sodium chloride that used for the testing material in aerosol generation and inhalation system was decreased in the 2nd and the 3rd hour's serial trials, but CVs(coefficient of variation) were maintained within 10%. CPMs for 5 and 2.5 gram of lead acetate that used for aerosol generation and inhalation exposure of lead showed similar results because of the sedimentation of lead acetate on piezoelectric crystal with time. For that reason, heating and mixing of nebulizing solution will be needed to generate lead aerosol with stable profile and maximum generation efficiency. Fluctuations of 10 and 5 gram lead acetate were low but 2.5gram was high. However, CVs for 10, 5, and 2.5gram lead acetate were within 10%. Considering the theoretical efficiencies for sodium chloride and lead acetate, 5gram sodium chloride and 2.5gram lead acetate were appropriate choice. Aerosol generation characteristics for two materials with 1 hour interval were different with respect to the fluctuation of CPM and the decrease to 10gram in it's material. For that reason, sodium chloride can not be used to estimate the aerosol generation and it's related parts for lead acetate. According to the testing conditions, source temperature 20, 50, 70℃, and inlet-duct band heater temperature 20, 50, 100, 150, 200℃, aerosol generation results for sodium chloride and lead acetate were as followings: Excluding inlet-duct band temperature 200℃, maximum CPM for sodium chloride was manifested in source temperature 70℃ with each inlet-duct band temperature conditions. We suggest that this condition was the optimum in the design of aerosol generator, inhalation system, and the testing. Maximum CPMs for 10, 5, and 2.5gram sodium chloride were from source temperature 70℃ and inlet-duct band temperature 20℃. Excluding inlet-duct band temperature 50, 200℃, maximum CPMs for lead acetate were indicated in source temperature 50℃ with each inlet-duct band temperature conditions. We suggest that this condition was the optimum in the design of aerosol generator, inhalation system, and the testing for lead inhalation study. Source and inlet-duct band temperatures for 10, 5, 2.5gram lead acetate were 50 and 100℃, 50 and 100℃, 50 and 150℃, respectively. In conclusion, considering above 2 paragraphs of results for aerosol generation, 5gram efficiencies for sodium chloride, lead acetate were higher than 2.5gram's. If inlet-duct band temperature was same, aerosol generation was increased with increase of source temperature. To get maximum aerosol generation will be the conditions that set the appropriate inlet-duel band temperature for each materials and increase the source temperature.

Profiler Design for Evaluating Performance of WebCL Applications (WebCL 기반 애플리케이션의 성능 평가를 위한 프로파일러 설계 및 구현)

  • Kim, Cheolwon;Cho, Hyeonjoong
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.4 no.8
    • /
    • pp.239-244
    • /
    • 2015
  • WebCL was proposed for high complex computing in Javascript. Since WebCL-based applications are distributed and executed on an unspecified number of general clients, it is important to profile their performances on different clients. Several profilers have been introduced to support various programming languages but WebCL profiler has not been developed yet. In this paper, we present a WebCL profiler to evaluate WebCL-based applications and monitor the status of GPU on which they run. This profiler helps developers know the execution time of applications, memory read/write time, GPU statues such as its power consumption, temperature, and clock speed.

Performance Assessment of a Lithium-Polymer Battery for HEV Utilizing Pack-Level Battery Hardware-in-the-Loop-Simulation System

  • Han, Sekyung;Lim, Jawhwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1431-1438
    • /
    • 2013
  • A pack-level battery hardware-in-the-loop simulation (B-HILS) platform is implemented. It consists of dynamic vehicle models using PSAT and multiple control interfaces including real-time 3D driving and GPS mode. In real-time 3D driving mode, user can drive a virtual vehicle using actual drive equipment such as steering wheel and accelerator to generate the cycle profile of the battery. In GPS mode, actual road traffic and terrain effects can be simulated using GPS data while the trajectory is displayed on Google map. In the latter part of the paper, several performance tests of an actual lithium-polymer battery pack are carried out utilizing the developed system. All experiments are conducted as parts of actual development process of a commercial battery pack adopting 2nd generation Prius as a target vehicle model. Through the experiments, the low temperature performance and fuel efficiency of the battery are quantitatively investigated in comparison with the original nickel-metal hydride (NiMH) pack of the Prius.

Process Control of Titanium Silicide Formation Using RTP (RTP를 사용한 타이타늄 실리사이드 형성의 공정 조절)

  • 이용재
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.15 no.5
    • /
    • pp.399-405
    • /
    • 1990
  • Rapid Thermal Process(RTP) has been used to precisely control and study the reaction rate for the formation of refractory titanuium silicide. Samples were prepared by sputtering deposition layer of titanium on n-type, poly-deposit silicon wafers. The process were then sujected to a matrix of rapid time-temperature profile under nitrgen, argon gas ambient to precisely control the silicide formation. Reacted films were analyzed by the sheet resistance measursrement, SEM, ASR and X-ray diffraction. Results were shown that the resistivity of the silicide films are below 20u-cm and the thickness of silicide films are about two times than that of as-deposited titanium films. Silicidation ambient was likely to happen at the same tamperature-time condition for argon and nitrogen gas.

  • PDF

Numerical investigation of two-component single-phase natural convection and thermal stratification phenomena in a rod bundle with axial heat flux profile

  • Grazevicius, Audrius;Seporaitis, Marijus;Valincius, Mindaugas;Kaliatka, Algirdas
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.3166-3175
    • /
    • 2022
  • The most numerical investigations of the thermal-hydraulic phenomena following the loss of the residual heat removal capability during the mid-loop operation of the pressurized water reactor were performed according to simplifications and are not sufficiently accurate. To perform more accurate and more reliable predictions of thermal-hydraulic accidents in a nuclear power plant using computational fluid dynamics codes, a more detailed methodology is needed. Modelling results identified that thermal stratification and natural convection are observed. Temperatures of lower monitoring points remain low, while temperatures of upper monitoring points increase over time. The water in the heated region, in the upper unheated region and the pipe region was well mixed due to natural convection, meanwhile, there is no natural convection in the lower unheated region. Water temperature in the pipe region increased after a certain time delay due to circulation of flow induced by natural convection in the heated and upper unheated regions. The modelling results correspond to the experimental data. The developed computational fluid dynamics methodology could be applied for modelling of two-component single/two-phase natural convection and thermal stratification phenomena during the mid-loop operation of the pressurized water reactor or other nuclear and non-nuclear installations at similar conditions.

Real-Time Variation of Water Quality with Water Depth in the Han River during the Spring Season (춘계 한강 수질의 실시간 수심별 변동특성)

  • Jung, Jin-Hong;Lim, Hyun-Man;Yoon, Young H.;Park, Jae-Roh;Kim, Weon-Jae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.4
    • /
    • pp.184-192
    • /
    • 2016
  • A profiling monitoring system has been developed to monitor the water quality variations according to each water depth and applied for a test-bed. The key parameters were derived to disclose the aquatic ecology and environment of river systems, and the real-time monitoring techniques to profile the variations of each parameter were verified. Monitoring parameters were configured to include water quality, hydrodynamic, and weather conditions. Considering the water depth of the 4 major rivers in Korea, a profiling monitoring system with 1.0 m water depth interval for each monitoring has been established. To understand the real-time variation properties in the Han river, the monitoring system has been installed and operated at the YangHwa-Dock as a test-bed. Based on the results of the detailed analyses on the spring season, as the characteristic diurnal and water-depth-related variations for water temperature, pH, dissolved oxygen (DO), and chlorophyll-a were observed, it could be concluded that the real-time water-depth profiling monitoring system is a very effective tool for the proper management of river environment.

미세금형 가공을 위한 전기화학식각공정의 유한요소 해석 및 실험 결과 비교

  • Ryu, Heon-Yeol;Im, Hyeon-Seung;Jo, Si-Hyeong;Hwang, Byeong-Jun;Lee, Seong-Ho;Park, Jin-Gu
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.81.2-81.2
    • /
    • 2012
  • To fabricate a metal mold for injection molding, hot-embossing and imprinting process, mechanical machining, electro discharge machining (EDM), electrochemical machining (ECM), laser process and wet etching ($FeCl_3$ process) have been widely used. However it is hard to get precise structure with these processes. Electrochemical etching has been also employed to fabricate a micro structure in metal mold. A through mask electrochemical micro machining (TMEMM) is one of the electrochemical etching processes which can obtain finely precise structure. In this process, many parameters such as current density, process time, temperature of electrolyte and distance between electrodes should be controlled. Therefore, it is difficult to predict the result because it has low reliability and reproducibility. To improve it, we investigated this process numerically and experimentally. To search the relation between processing parameters and the results, we used finite element simulation and the commercial finite element method (FEM) software ANSYS was used to analyze the electric field. In this study, it was supposed that the anodic dissolution process is predicted depending on the current density which is one of major parameters with finite element method. In experiment, we used stainless steel (SS304) substrate with various sized square and circular array patterns as an anode and copper (Cu) plate as a cathode. A mixture of $H_2SO_4$, $H_3PO_4$ and DIW was used as an electrolyte. After electrochemical etching process, we compared the results of experiment and simulation. As a result, we got the current distribution in the electrolyte and line profile of current density of the patterns from simulation. And etching profile and surface morphologies were characterized by 3D-profiler(${\mu}$-surf, Nanofocus, Germany) and FE-SEM(S-4800, Hitachi, Japan) measurement. From comparison of these data, it was confirmed that current distribution and line profile of the patterns from simulation are similar to surface morphology and etching profile of the sample from the process, respectively. Then we concluded that current density is more concentrated at the edge of pattern and the depth of etched area is proportional to current density.

  • PDF

Analysis of Aroma Compounds of Cinnamon by Solid Phase Microextraction (Solid Phase Microextraction을 이용한 계피의 향기성분 분석)

  • 이창국;이재곤;장희진;곽재진
    • The Korean Journal of Food And Nutrition
    • /
    • v.16 no.4
    • /
    • pp.372-378
    • /
    • 2003
  • The volatile components of cinnamon bark were extracted by using different isolation methods, simultaneous distillation extraction (SDE) and solid phase microextraction (SPME). Then the volatile components were analyzed by gas chromatography(GC) and mass selective detector(MSD). 30 compounds were identified in cinnamon bark. In SPME technique, several factors influencing the equilibrium of the aroma compounds between sample and SPME fiber was taken into account, including the kind of SPME fiber, extraction temperature and extraction time. Four different SPME fibers were tested, namely polydimethylsiloxane (PDMS), poly acrylate(PA), divinyl- benzene-carboxen-polydimethylsiloxane (DVB/CAR/PDMS) and carbowax/divinylbenzene(CW/DVB). Among these SPME fiber, PDMS coating fiber showed the best results. The profile of volatile compounds of cinnamon bark at different extraction temperature and extraction time were investigated by 100$\mu\textrm{m}$ PDMS fiber.

The role background noise intensity on Physiological activity during performance of mental task (인지과제 수행시 배경 소음의 크기에 따른 생리적 반응차)

  • Sohn Jin-Hun;Sokhadze Estate M.;Min Yoon-Ki;Lee Kyung-Hwa;Choi Sangsup
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.269-273
    • /
    • 1999
  • Combination of mental stress task with noise background is a traditional tool employed in psychophysiology. However, intensity of background noise is a factor affecting both performance on test and psychophysiological responses associated with stress evoked by mental load in noisy environment. In the current study on 7 subjects we analyzed the influence of white noise (WN) intensity (55, 70, and 85 dB[A] ) on psychophysiological responses during word recognition test performed on noise background. There were recorded following physiological variables: electrodermal activity (EDA) , namely, skin conductance level (SCL), skin conductance response (SCR) amplitude (SCR-A), rise time and total number of SCRs (N-SCR); cardiovascular activity, e.g., heart rate (HR), respiratory sinus arrhythmia (RSA) index, pulse transit time (PTT), finger pulse volume (PV), skin temperature (SKT) and respiratory activity, such as respiration rate (RESP-R) and inspiration wane amplitude (RESP-A) during baseline resting state and 40 s long performance on 3 similar Korean word recognition tests with different WN intensity (55, 70, and 85 dB). Electrodermal responses (SCR-A, SCL, N-SCR) demonstrated gradual increment with increased intensity of noise, and this increase of response magnitude with higher intensity of noise was typical also for r skin temperature (phasic SKT decrease) and pulse volume (phasic and tonic PV decrease). However, some cardiovascular and respiratory responses did not exhibit same tendency of gradual increase of reactivity , namely HR, as well as RESP-R and RESP-A showed decrement of response magnitudes. Important finding in terms of cardiovascular reactivity was that 55 and 70dB evoked similar profiles, while 85dB WN resulted in significantly different profile of reactions, suggesting that there exists a threshold level after which intensive auditory stimulation elicits psychophyslological responses pattern of different quality. There are discussed potential autonomic mechanism involved in mediation of observed physiological responses.

  • PDF

Production of Protein Hydrolyzate, that can be used as Food Additives, from Okara (산업폐기물인 비지로부터 식품첨가물로 이용할 수 있는 단백질 가수분해물의 생산)

  • Woo, Eun-Yeol;Kim, Min-Jung;Shin, Weon-Sun;Lee, Kyung-Ae;Kim, Kang-Sung
    • Korean Journal of Food Science and Technology
    • /
    • v.33 no.6
    • /
    • pp.769-773
    • /
    • 2001
  • Protein content of okara and soybean were found to be 37.3% and 42.5%, respectively by micro-Kjeldahl analysis. Solubility of okara protein in phosphate buffer (pH 8) was 10% versus soy protein of 68.4%. Insolubilization of okara protein was mostly due to disulfide bonding between cysteine residues caused by excessive heat treatment during soymilk processing: hydrophobic interactions and hydrogen bondings were involved to lesser extent. Optimum extraction temperature and time were $60^{\circ}C$ and 40 min. Typical solubility profile of soy protein disappeared for okara protein though minimum solubility of the protein was around pH 3.0. Treating okara with protease was effective in solubilizing okara protein and solubility increased to 19.2%. Optimum reaction temperature and time were $80^{\circ}C$ and 50 min, respectively. Cell wall degrading enzyme did not increase solubility of the protein, however. Through enzymatic reaction okara protein could be effectively solubilized for uses as food ingredient.

  • PDF