• Title/Summary/Keyword: temperature-time profile

Search Result 273, Processing Time 0.034 seconds

Thermal Flow Characteristics of a New Micro Flow Sensor with Multiple Temperature Sensing Elements (다단계 온도 감지막을 가진 마이크로 흐름센서의 열전달 특성)

  • Kim Tae Yong;Chung Wan-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.3
    • /
    • pp.595-600
    • /
    • 2005
  • A micro flow sensor on silicon substrate allows the fabrication of small components where many different functions can be integrated so that the functionality of the sensors can be increased. Further more, the small size of the elements these sensors can be quite fast. A thermal mass flow sensor measures the asymmetry of temperature profile around the heater which is modulated by the fluid flow. In normal, a mass flow sensor is composed of a central heater and a pair of temperature sensing elements around the heater A new 2-D wide range micro flow sensor structure with three pairs of temperature sensors and a central heater was proposed and numerically simulated by Finite Difference formulation to confirm the feasibility of the flow sensor structure in time domain.

MPS eutectic reaction model development for severe accident phenomenon simulation

  • Zhu, Yingzi;Xiong, Jinbiao;Yang, Yanhua
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.833-841
    • /
    • 2021
  • During the postulated severe accident of nuclear reactor, eutectic reaction leads to low-temperature melting of fuel cladding and early failure of core structure. In order to model eutectic melting with the moving particle semi-implicit (MPS) method, the eutectic reaction model is developed to simulate the eutectic reaction phenomenon. The coupling of mass diffusion and phase diagram is applied to calculate the eutectic reaction with the uniform temperature. A heat transfer formula is proposed based on the phase diagram to handle the heat release or absorption during the process of eutectic reaction, and it can combine with mass diffusion and phase diagram to describe the eutectic reaction with temperature variation. The heat transfer formula is verified by the one-dimensional melting simulations and the predicted interface position agrees well with the theoretical solution. In order to verify the eutectic reaction models, the eutectic reaction of uranium and iron in two semi-infinite domains is simulated, and the profile of solid thickness decrease over time follows the parabolic law. The modified MPS method is applied to calculate Transient Reactor Test Facility (TREAT) experiment, the penetration rate in the simulations are agreeable with the experiment results. In addition, a hypothetical case based on the TREAT experiment is also conducted to validate the eutectic reaction with temperature variation, the results present continuity with the simulations of TREAT experiment. Thus the improved method is proved to be capable of simulating the eutectic reaction in the severe accident.

Mathematical Modeling of Self-propagating High Temperature Synthesis of Molybdenum- Tungstenb Disilicide (이규화 몰리브덴-텅스텐의 자전 고온 합성 반응 모델링)

  • Yeon, Sun-Hwa;Jang, Dae-Gyu;Lee, Cheol-Gyeong
    • Korean Journal of Materials Research
    • /
    • v.11 no.3
    • /
    • pp.164-170
    • /
    • 2001
  • The Self-propagating High-temperature Synthesis (SHS) for synthesizing ($Mo_{1-z}$ , $W_{z}$)$Si_2$was conducted experimentally with the mole fraction of Tungsten(W) from z=0.0 to z=0.5. The temperature profile was measured according to the reaction time through the thermocouple that was equipped into the center of these samples. When the reaction front is propagated around the thermocouple, the highest temperature appears and we regard this temperature as the adiabatic temperature. We found out by experimental results that the reaction velocity is in the range of 2.14~1.35mm/sec and the adiabatic temperature is in the range of 1883~1507K for the six samples. The reaction velocity and the adiabatic temperature were inclined to decrease with an increasing of the mole fraction of Tungsten (W). The SHS modeling is presented in order to predict the temperature profiles and these results are compared with the experimental results. It is predicted that in case of increasing the initial temperature of these six samples, the reaction temperature increased and that the sample of z=0.5 needs the preheating up to 800~900K in order to become reaction temperature 1900K.

  • PDF

A Study on Characteristics of Indoor- Air-Quality in Interior Space Equipped with System Air-Conditioner (시스템 에어컨 설치 공간의 실내공기질 특성에 관한 연구)

  • Lee, Sang-Won;Kim, Jong-Min;Yeum, Seung-Won;Cho, Dae-Gun;Choi, Jae-Boong;Kim, Seok-Woo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.5
    • /
    • pp.304-313
    • /
    • 2008
  • This paper investigates the indoor-air-quality (IAQ) characteristics of the interior space equipped with system air-conditioner. The behaviors of individual variables such as temperature, humidity and concentration of carbon dioxide ($CO_2$) that influence on IAQ of the interior space were characterized under various cooling conditions by numerical and experimental studies. The numerical analysis predicting the temperature behavior of the interior space was conducted, and its results showed a good agreement with the experimental ones. The $CO_2$ concentration and humidity were measured and their time dependent behaviors were monitored and analyzed. From the results, it was found that there existed the differences of the time-dependent behaviors of IAQ variables according to the locations. In addition, it is demonstrated that the large discharge angle of $45^{\circ}$ made the temperature profile more irregular and the high discharge flow of 5.34 m/s produced similar temperature profiles at three different sensing locations. Finally, the humidity of interior space was less sensitive to the changes of the air cooling conditions than the case of temperature and the $CO_2$ concentration increase mainly depended on the number of individuals inside the space.

An Analysis of Unsteady 2-D Heat Transfer of the Thermal Stratification Flow inside Horizontal Pipe with Electrical Heat Tracing (Heat Tracing이 있는 수평배관 내부 열성층 유동의 비정상 2차원 열전달 해석)

  • 정일석;송우영
    • Journal of Energy Engineering
    • /
    • v.6 no.2
    • /
    • pp.119-128
    • /
    • 1997
  • A method to mitigate the thermal stratification flow of a horizontal pipe line is proposed by heating external bottom of the pipe with electrical heat tracing. Unsteady two dimensional model has been used to numerically investigate an effect of the external heating on the thermal stratification flow. The dimensionless governing equations are solved by using the control volume formulation and SIMPLE algorithm. Temperature distribution, streamline profile and Nusselt number distributions are analyzed under heating conditions. The numerical results of this study show that the maximum dimensionless temperature difference between hot and cold sections of the inner wall of pipe is 0.424 at dimensionless time of 1,500 and the thermal stratification phenomenon disappears at about dimensionless time of 9,000.

  • PDF

In-doping effects on the Structural and Electrical Properties of ZnO Films prepared by Ultrasonic Spray Pyrolysis (초음파 분무 열분해법으로 제초한 ZnO막의 전기적, 구조적 특성에 미치는 In첨가 효과)

  • 심대근;양영신;마대영
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.1010-1013
    • /
    • 2001
  • Zinc oxide(ZnO) films were prepared by ultrasonic spray pyrolysis on indium (In) films deposited by evaporation and subsequently submitted to rapid thermal annealing (RTA). The RTA was processed in air or a vacuum ambient. The crystallographic properties and surface morphologies of the films were characterized before and after the RTA by X-ray diffraction (XRD) and scanning electron microscopy(SEM), respectively. The resistivity variation of the films with RTA temperature and time was measured by the 4-point probe method. Auger electron spectroscopy(AES) was carried out to figure out the distribution of indium atoms in the ZnO films. The resistivity of the ZnO on In(ZnO/In) films decreased to 2${\times}$10$\^$-3/ $\Omega$cm by diffusion of the In. The In diffusion into the ZnO films roughened the surface of the ZnO films. The results of depth profile by AES showed a hump of In atoms around ZnO/In interface after the RTA at 800$^{\circ}C$, which disappeared by the RTA at 1000$^{\circ}C$. The effects of temperature, time and ambient during the RTA on the structural and electrical properties of the ZnO/In films were discussed.

  • PDF

Indium Diffusion Effects on the Structural and Electrical Properties of ZnO Films Prepared by Ultrasonic Spray Pyrolysis (초음파 분무 열분해법으로 제조한 ZnO막의 전기적, 구조적 특성에 미치는 인듐 확산 효과)

  • 심대근;배성찬;마대영
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.10
    • /
    • pp.828-834
    • /
    • 2001
  • Zinc oxide (ZnO) films deposited on indium (In) films were post-annealed in a rapid thermal anealing (RTA) system. The ZnO/In films were RTA-treated in air or a vacuum ambient. The crystallographic properties and surface morphologies of the films were studied before and after the RTA by X-ray diffraction(XRD) and scanning electron microscopy (SEM), respectively. The resistivity variation of the films with RTA temperature and time was measured by the 4-point probe method. Auger electron spectroscopy (AES) was carried out to figure out the redistribution of indium atoms in the ZnO films. The resistivity of the ZnO/In films decreased to 2$\times$10$\^$-3/ Ωcm by diffusion of the In. The In diffusion into the ZnO films roughened the surface of ZnO films. The results of depth profile by AES showed a hump of In atoms around ZnO/In interface after the RTA at 800 $\^{C}$. The effects of temperature time and ambient during the RTA on the structural and electrical properties of the ZnO/In films were discussed.

  • PDF

Effects of Soft Steam Treatments on Quality Characteristics of Potatoes (감자의 품질특성에 대한 저온스팀 열처리 방식의 효과)

  • Cheigh, Chan-Ick;Lee, Jin-Hee;Chung, Myong-Soo
    • The Korean Journal of Food And Nutrition
    • /
    • v.25 no.1
    • /
    • pp.50-56
    • /
    • 2012
  • This paper examines the effects of various methods of soft steaming(i.e., forced convection-boiler, forced convection-fan, and natural convection) on the quality of potatoes. In particular, the paper investigates the effects of cooking conditions (the steaming method, the treatment time, and the temperature) on the color(L, a, b), moisture content, texture profile, and ascorbic acid of potatoes. The results indicate that not only the cooking method, the treatment time, and the temperature but also the heat transfer mechanism had considerable influence on potato quality. In addition, natural convection steaming was superior to other treatment methods in terms of nutrient retention and texture maintenance. The results of this study should be useful for establishing commercial standards for processing potatoes and improving the quality of thermally processed foods.

Morphology Development in a Range of Nanometer to Micrometer in Sulfonated Poly(ethylene terephthalate) Ionomer

  • Lee, Chang-Hyung;Inoue, Takashi;Nah, Jae-Woon
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.4
    • /
    • pp.580-586
    • /
    • 2002
  • We investigated the effect of ionic component on crystalline morphology development during isothermal annealing in a sodium neutralized sulfonated poly(ethylene terephthalate) ionomer (Ion-PET) by time-resolved small-angle x-ray scattering (TR-SAX S) using synchrotron radiation. At early stage in Ion-PET, SAXS intensity at a low annealing temperature (Ta = 120 $^{\circ}C)$ decreased monotonously with scattering angle for a while. Then SAXS profile showed a peak and the peak position progressively moved to wider angles with isothermal annealing time. Finally, the peak intensity decreased, shifting the peak angle to wider angle. It is revealed that ionic aggregates (multiplets structure) of several nm, calculated by Debye-Bueche plot, are formed at early stage. They seem to accelerate the crystallization rate and make fine crystallites without spherulite formation (supported by optical microscopy observation). From decrease of peak intensity in SAXS,it is suggested that new lamellae are inserted between the preformed lamellae so that the concentration of ionic multiplets in amorphous region decreases to lower the electron density difference between lamellar crystal and amorphous region. In addition, analysis on the annealing at a high temperature (Ta = 210 $^{\circ}C)$ by optical microscopy, light scattering and transmission electron microscopy shows a formation of spherulite, no ionic aggregates, the retarded crystallization rate and a high level of lamellar orientation.

Chandra Archival Survey of Galaxy Clusters: X-ray Point Sources in Cool-core and Non-cool-core Clusters

  • Kim, Minsun;Kim, Eunhyeuk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.78.1-78.1
    • /
    • 2012
  • We have studied the physical properties of X-ray point sources in galaxy clusters using ~600 Chandra archival observations. The goal of this study is to investigate the density environmental effects on the physical properties of X-ray point sources by comparing the properties of X-ray point sources in galaxy clusters to those in typical blank fields. In this presentation, we show the nature of X-ray point sources which are expected to be related with galaxy clusters with different core properties. Using ~60 galaxy clusters observed with Chandra, we investigate the physical properties of X-ray point sources in cool-core and non-cool-core clusters. The cool-core clusters are known to have short central cooling time, and are characterized by low central entropy, systematic central temperature drops, and a brightest cluster galaxy at the X-ray peak. While the non-cool-core clusters have longer central cooling time, and are characterized by large central entropies and flat or centrally rising temperature profile. We show that how central core properties of galaxy clusters affect on the physical properties of X-ray point sources.

  • PDF