• Title/Summary/Keyword: temperature-dependent properties

Search Result 976, Processing Time 0.027 seconds

Properties Changes of Cokes and Forming Bodies Derived from Them during Artificial Graphite Manufacturing (인조흑연 제조공정중의 코크스와 그 성형체의 물성변화)

  • Gwon, Yeong-Bae;Kim, Hong
    • 한국기계연구소 소보
    • /
    • s.20
    • /
    • pp.105-114
    • /
    • 1990
  • The relationship between the properties of two kinds of calcined cokes and graphitized forming bodies were examined. The microstructures of the forming bodies are already determined to some degree at the stage of baking. Calcined cokes as well as baked forming bodies using the same coke as filler were heat treated at various temperatures and their structural and properties changes with heat treated temperature were studied. The transition in properties changes with heat treatment in forming bodies were observed around $2000^{\circ}C$. The characteristics of the finial graphite bodies are strongly dependent on the properties of the raw material cokes.

  • PDF

A study on Creep of Plate PMMA in Thermal-Nanoindentation Process for Hyperfine pit structure Fabrication (극미세 점 구조체 제작을 위한 열간나노압입 공정에서의 평판형 PMMA의 크립현상에 관한 연구)

  • Lee, E.K.;Jung, Y.N.;Kang, C.G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.273-276
    • /
    • 2008
  • Thermoplastic resin takes place stress relaxation and creep according to temperature and time. In room temperature, time dependent deformation (TDD) of polymer was carried out at previous study. In this study, it evaluates time dependent deformation to relate temperature. Nanoscale indents can be used as cells for molecular electronics and drug delivery, slots for integration into nanodevices, and defects for tailoring the structure and properties. Therefore, it is important to control pattern depth for change of indent depth by creep when using Nanoindenter. For evaluating TDD at high temperature, it is occurred thermal-nanoindentation test by changing hold time at maximum load. Temperature is putted at $90^{\circ}C$, hold time at maximum loads are putted at 1, 10, 50, 100, 200, 300 and 500s.

  • PDF

The Effect of Thermal Properties on Temperature Development of Concrete (열적성질을 고려한 콘크리트의 수화발열특성에 관한 연구)

  • Shon, Myung-Soo;Park, Yon-Dong;Kim, Hoon;Kim, Ho-Young;Lee, Yang-Soo;Kang, Suck-Hwa
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.97-102
    • /
    • 1997
  • In this study, a predictive method which was modified from KIshi's model for the temperature development of concrete was developed by using mineral compounds of clinker and pozzolans. Temperature dependent heat generation of reaction was also considered. Specific heat considering the effect of mix proportion and temperature was calculated with experimental data in the literatures. Thermal conductivity considering the effect of mix proportion and temperature was experimentally investigated. Through this research it was found that the developed method considering thermal properties accurately predicted adiabatic temperature rise of concrete without the experiment. It was also found that the thermal conductivity of concrete could be predicted by the volume ratio of each component of mix proportion and was independent of temperature within the normal climatic range.

  • PDF

Thickness-dependent Electrical, Structural, and Optical Properties of ALD-grown ZnO Films

  • Choi, Yong-June;Kang, Kyung-Mun;Park, Hyung-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.2
    • /
    • pp.31-35
    • /
    • 2014
  • The thickness dependent electrical, structural, and optical properties of ZnO films grown by atomic layer deposition (ALD) at various growth temperatures were investigated. In order to deposit ZnO films, diethylzinc and deionized water were used as metal precursor and reactant, respectively. ALD process window was found at the growth temperature range from $150^{\circ}C$ to $250^{\circ}C$ with a growth rate of about $1.7{\AA}/cycle$. The electrical properties were studied by using van der Pauw method with Hall effect measurement. The structural and optical properties of ZnO films were analyzed by using X-ray diffraction, field emission scanning electron microscopy, and UV-visible spectrometry as a function of thickness values of ZnO films, which were selected by the lowest electrical resistivity. Finally, the figure of merit of ZnO films could be estimated as a function of the film thickness. As a result, this investigation of thickness dependent electrical, structural, and optical properties of ZnO films can provide proper information when applying to optoelectronic devices, such as organic light-emitting diodes and solar cells.

Fabrication, temperature-dependent local structural and electrical properties of VO2 thin films

  • Jin, Zhenlan;Hwang, In-Hui;Park, Chang-In;Han, Sang-Wook
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.169.2-169.2
    • /
    • 2015
  • $VO_2$ is a well-known a metal-to-insulator-transition (MIT) material, accompanied with a first order structural phase transition near room temperature. Because of the structural phase transition and the MIT occur near a same temperature, there is an ongoing argument whether the MIT is induced by the structural phase transition. $VO_2$ exhibits a relatively weak anti-oxidization ability and can be oxidized to higher-valence oxides (e.g., $V_4$ $O_7$ or $V_2$ $O_5$) when annealed at a high temperature in an oxygen-rich atmosphere. We fabricated $VO_2$ films on $Al_2$ $O_3$ (0001) substrates using a DC magnetron sputtering deposition process with carefully control the $O_2$ percentage in an atmosphere. X-ray diffraction measurements from the films showed only (0l0) peaks with no extra peaks, indicating b-oriented films. The temperature-dependent local structural properties of $VO_2$ films were investigated by using in-situ X-ray absorption fine structure (XAFS) measurements at the V K edge. XAFS revealed that the structural phase transition was occurred nearly $70^{\circ}C$ for heating process and reproducible. Resistance measurements as a function of temperature (R-T) demonstrated that the resistance of $VO_2$ films was changed by a factor of 4 near $75^{\circ}C$ which was higher than $68^{\circ}C$ reported from a $VO_2$ bulk. We will discuss the MIT of $VO_2$ films, comparing with the local structural properties determined by XAFS measurements.

  • PDF

Temperature and Strain Rate Dependent Tension Properties of Stainless Steel-Aluminum-Magnesium Multilayered Sheet Fabricated by Roll Bonding (롤 아연된 STS-Al-Mg 이종금속판재의 온도와 변형률속도에 따른 1축인장 변형특성)

  • Hwang, B.K.;Lee, K.S.;Hong, S.E.;Lee, Y.S.
    • Transactions of Materials Processing
    • /
    • v.20 no.3
    • /
    • pp.257-264
    • /
    • 2011
  • Multilayer(clad) sheets, composed of two or more materials with different properties, are fabricated using the roll-bonding process. A good formability is an essential property for a multilayered sheet in order to manufacture parts by plastic deformation. In this study, the influences of temperature and strain rate on the plastic properties of stainless steel-aluminum-magnesium multilayered(STS-Al-Mg) sheets were investigated. Tensile tests were performed at various temperatures and strain rates on the multilayered sheet and on each separate layer. Fracture of the multilayered sheet was observed to be temperature-dependent. At the base temperature of $200^{\circ}C$, all materials fractured simultaneously. At lower temperatures, the Mg alloy sheet fractured earlier than the other materials. Conversely, the other materials fractured earlier than the Mg alloy sheet at higher temperatures. The uniform and total elongations of the multilayered sheet were observed to be higher than that of each material at a temperature of $250^{\circ}C$. Larger uniform elongations were obtained for higher strain rates at constant temperature. The same trend was observed for the Mg alloy sheet, which exhibited the lowest elongation among the three materials. The tensile strengths and elongations of the single layer sheets were compared to those of the multilayer material. The strength of the multilayered sheet was successfully calculated by the rule of mixture from the values of each single layer. However, no simple correlation between the elongation of each layer and that of the multilayer was obtained.

Temperature-dependent axial mechanical properties of Zircaloy-4 with various hydrogen amounts and hydride orientations

  • Bang, Shinhyo;Kim, Ho-a;Noh, Jae-soo;Kim, Donguk;Keum, Kyunghwan;Lee, Youho
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1579-1587
    • /
    • 2022
  • The effects of hydride amount (20-850 wppm), orientation (circumferential and radial), and temperature (room temperature, 100 ℃, 200 ℃) on the axial mechanical properties of Zircaloy-4 cladding were comprehensively examined. The fraction of radial hydride fraction in the cladding was quantified using PROPHET, an in-house radial hydride fraction analysis code. Uniaxial tensile tests (UTTs) were conducted at various temperatures to obtain the axial mechanical properties. Hydride orientation has a limited effect on the axial mechanical behavior of hydrided Zircaloy-4 cladding. Ultimate tensile stress (UTS) and associated uniform elongation demonstrated limited sensitivity to hydride content under UTT. Statistical uncertainty of UTS was found small, supporting the deterministic approach for the load-failure analysis of hydrided Zircaloy-4 cladding. These properties notably decrease with increasing temperature in the tested range. The dependence of yield strength on hydrogen content differed from temperature to temperature. The ductility-related parameters, such as total elongation, strain energy density (SED), and offset strain decrease with increasing hydride contents. The abrupt loss of ductility in UTT was found at ~700 wppm. Demonstrating a strong correlation between total elongation and offset strain, SED can be used as a comprehensive measure of ductility of hydrided zirconium alloy.

Monitoring of Extraction Properties of Ginseng Components during Pressurized Micorwave-Assisted Extraction (가압조건의 마이크로웨이브 추출에서 몇가지 인삼성분의 추출특성 모니터링)

  • 권중호;이새봄;이기동;정용진;김정숙
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.5
    • /
    • pp.1087-1091
    • /
    • 1999
  • Microwave extraction system equipped with closed vessels, which is known to rapidly extract target compounds from natural products, was applied to monitor the changes in phenolic compounds, browning color intensity and electron donating ability by using response surface methodology(RSM). Maximum content of phenolic compound was 21.65mg/100ml in 67.88% of ethanol concentration, 145oC of extraction temperature, and 6.24min of extraction time. The phenolic compounds in extracts are dependent on the increase of the extraction temperature and the ethanol concentration. Browning color intensity, which was maximized in 67.21%, 147oC, and 6.02min, was proportional to the increase of the extraction temperature. Maximum value of electron donating ability was 24.50units in 54.33%, 147oC, and 6.11 min. The electron donating ability of extracts was dependent on the increase of extraction temperature and maximized in the range from 50 to 65% of ethanol concentration.

  • PDF

Vibration and stability of embedded cylindrical shell conveying fluid mixed by nanoparticles subjected to harmonic temperature distribution

  • Shokravi, Maryam;Jalili, Nader
    • Wind and Structures
    • /
    • v.25 no.4
    • /
    • pp.381-395
    • /
    • 2017
  • Nonlinear vibration and instability of cylindrical shell conveying fluid-nanoparticles mixture flow are studied in this article. The surrounding elastic medium is modeled by Pasternak foundation. Mixture rule is used for obtaining the effective viscosity and density of the fluid-nanoparticles mixture flow. The material properties of the elastic medium and cylindrical shell are assumed temperature-dependent. Employing first order shear deformation theory (FSDT), the motion equations are derived using energy method and Hamilton's principal. Differential quadrature method (DQM) is used for obtaining the frequency and critical fluid velocity. The effects of different parameters such as volume percent of nanoparticles, boundary conditions, geometrical parameters of cylindrical shell, temperature change, elastic foundation and fluid velocity are shown on the frequency and critical fluid velocity of the structure. Results show that with increasing volume percent of nanoparticles in the fluid, the frequency and critical fluid velocity will be increases.

The Temperature Dependent C-H/V Constitutive Modeling for Magnesium Alloy Sheet (마그네슘 판재를 위한 온도 의존형 C-H/V 구성 모델에 관한 연구)

  • Park, J.H.;Lee, J.K.;Kim, H.Y.
    • Transactions of Materials Processing
    • /
    • v.21 no.4
    • /
    • pp.221-227
    • /
    • 2012
  • The automotive and electronic industries have seriously considered the use of magnesium alloys because of their excellent properties such as strength to weight ratio, EMI shielding capability, etc. However, it is difficult to form magnesium alloys at room temperature because of the mechanical deformation related to twinning. Hence, magnesium alloys are normally formed at elevated temperatures. In this study, a temperature dependent constitutive model, the C-H/V model, for the magnesium alloy AZ31B sheet is proposed. A hardening law based on nonlinear kinematic and H/V(Hollomon/Voce) hardening model is used to properly characterize the Bauschinger effect and the stabilization of the flow stress. Material parameters were determined from a series of uni-axial cyclic experiments(C-T-C) with the temperature ranging between 150 and $250^{\circ}C$. The developed models are fit to experimental data and a comparison is made.