• Title/Summary/Keyword: temperature zone

Search Result 1,879, Processing Time 0.029 seconds

유류오염대수층에서 고온 공기분사공정법을 통한 TPH, VOCs, $CO_2$ 변화에 관한 특성인자 연구

  • Lee Jun-Ho;Park Gap-Seong
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.232-236
    • /
    • 2005
  • In-situ Air Sparging (IAS, AS) is a groundwater remediation technique, in which organic contaminants are volatilized into air as it rises from saturated to vadose soil zone. The purpose of this study was to investigate the effect of environmental conditions on the degradation of VOCs (Volatile Organic Compounds) and $CO_2$ in the unsaturated zone and TPH (Total Petroleum Hydrocarbons) in saturated zone of sandy loam. In the laboratory, diesel (10,000 mg TPH/kg)-contaminated saturated soil. After heating the soil for 36 days, the equilibrium temperature of soil reached to $34.9{\pm}2.7^{\circ}C$ and TPH concentration was reduced to 78.9% of the initial value, Volatilization loss of VOCs in TPH was about 2%, The reduction gradient of $CO_2$ concentration was 0.018/day in air space and 0.0007/day in unsaturated zone.

  • PDF

Measurement of Weld Material Properties of Alloy 617 Using an Instrumented Indentation Technique (계장화 압입시험법에 의한 Alloy 617 용접 물성치 측정)

  • Song, Kee-Nam;Hong, Sung-Deok;Ro, Dong-Seong;Lee, Joo-Ha;Hong, Jung-Hwa
    • Journal of Welding and Joining
    • /
    • v.31 no.5
    • /
    • pp.41-46
    • /
    • 2013
  • Different microstructures in the weld zone of a metal structure such as a fusion zone or heat affected zone are formed as compared to the parent material. Thus, the mechanical properties in the weld zone are different from those in the parent material. As the basic data for reliably understanding the structural characteristics of a welded PCHE specimen to be made of Alloy 617, the mechanical properties in the weld zone and parent material for a Alloy 617 plate are measured using an instrumented indentation technique in this study.

A study on the performance prediction of 4 cycle 4 cylinder S.I. engine considering the unsteady flow in the intake and exhaust pipes (흡배기 관내의 비정상 유동을 고려한 4사이클, 4기통 전기.점화 기관의 성능 예측에 관한 연구)

  • 박성서;김응서
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.72-81
    • /
    • 1991
  • In this study, the analytic investigation of the unsteady flow in the intake and exhaust pipes has been carried out using the method of characteristics in one direction to predict volumetric efficiency. Based on the calculated volumetric efficiency, three zone predictive analysis using Wiebe function was applied to predict the engine performance and the results were compared with experiment. Mixture in the cylinder is subdivided into three zones during combustion process in this analysis; adiabatic core zone, thermal boundary layer zone and unburned zone. In each zone, pressure, temperature and gas composition have been calculated. In conclusion, it is possible to take account of the intake and exhaust pipe tuning effect in predicting the engine performance, by the analytic solution of the unsteady flow in the pipes, and comparison of prediction with experimental results shows a good agreement on the pressure variation in the intake and exhaust pipes which has a direct influence on the volumetric efficiency and performance of the engine.

  • PDF

Measurement of Weld Mechanical Properties of SUS316L Plate Using an Instrumented Indentation Technique (계장화 압입시험법에 의한 SUS316L판의 용접부 기계적 물성치 측정)

  • Song, Kee-Nam;Hong, Sung-Deok;Ro, Dong-Seong
    • Journal of Welding and Joining
    • /
    • v.31 no.2
    • /
    • pp.37-42
    • /
    • 2013
  • Different microstructures in the weld zone of a metal structure such as a fusion zone or heat affected zone are formed as compared to the parent material. Thus, the mechanical properties in the weld zone are different from those in the parent material. As the basic data for reliably understanding the structural characteristics of welded PCHE prototype made of SUS316L, the mechanical properties in the weld zone and parent material for a SUS316L plate are measured using an the instrumented indentation technique in this study.

Study of Vegetation Structure about Shrine Forest in Jirisan National Park with Regard to Global Warming (지구온난화를 고려한 지리산 국립공원 내 사찰림의 식생구조 연구)

  • Lee, Sung-Je;Ahn, Young-Hee
    • Journal of Environmental Science International
    • /
    • v.23 no.11
    • /
    • pp.1863-1879
    • /
    • 2014
  • This study aims at classifying and interpreting on the shrine forest vegetation located in Jirisan national park affiliated to an ecotone in southern part of Korea, foreseeing a vegetation change based on composition species and dominant species on canopy, and proposing the direction of vegetation management. The shrine forests were classified into the 7 community units as Chamaecyparis obtusa-Cryptomeria japonica afforestation, Pinus densiflora community, Pinus rigida afforestation, Quercus variabilis-Quercus serrata community, Zelkova serrata-Kerria japonica for. japonica community, Phyllostachys bambusoides forest, Camellia japonica community. This research is also expatiated on the analogous results of ordination analysis with phytosociological analysis. The constituents of deciduous broad-leaved forest in the warm temperate zone were appeared in the most vegetations. It emerged less that the constituents of evergreen broad-leaved forest in the warm-temperate zone and deciduous broad-leaved forest in the cold-temperature zone. The life form analyses were made use with the two ways: appearance species in total communities and each community. The species diversity of shrine forests is declined because the high dominances of Sasa borealis and Pseudosasa japonica emerged in the shrub and herb layers. These shrine forests will be succession to Q. variabilis-Q. serrata community as the representative vegetation of deciduous broad-leaved forest in the warm-temperate zone, owing to the temperature rise by global warming, and an evergreen broad-leaved forest will be able to be also formed if a temperate rise will be continued. The one of the artificial management of shrine forests is to consider the introduction of the constituents of evergreen broad-leaved forest in the warm-temperate zone.

A Numerical Study of Smoke Movement in Atrium Fires with Ceiling Hea Flux (천장에 열 유속을 갖는 대형 공간에서 화재 발생시 연기거동에 대한 수치해석적 연구)

  • 정진용;유홍선;김성찬;김충익
    • Fire Science and Engineering
    • /
    • v.13 no.4
    • /
    • pp.20-29
    • /
    • 1999
  • This paper describes the smoke filling process of a fire field model based on a self-developed SMEP(Smoke Movement Estimating Program) code to the simulation of fire induced flows in the two types of atrium space containing a ceiling heat flux. The SMEP using PISO algorithm solves conservation equations for mass, momentum, energy and species, together with those for the modified k- epsilon turbulence model with buoyancy term. Compressibility is assumed and the perfect gas law is used. The results of the calculated upper-layer average temperature and smoke layer interface height has shown reasonable agreement compared with the zone models. The zone models used are the CFAST developed at the Building and Fire Research Laboratory NIST U.S.A. and the NBTC one-room of FIRECALC developed at CSIRO, Australia. The smoke layer interface heights that are important in fire safety were not as sensitive as the smoke layer temperature to the nature of ceiling heat flux condition.

  • PDF

Root zone environments in two cropping system within a year for Kyoho grapes (포도 '거봉'의 2기작 재배에서 근권환경 특성)

  • 오성도;김용현
    • Journal of Bio-Environment Control
    • /
    • v.6 no.4
    • /
    • pp.235-241
    • /
    • 1997
  • This study was performed to investigate the behaviour of root zone environments under the control of soil temperature and tension of soil moisture near the root Bone of 'Kyoho' grapes tree grown on restricted root zone system in plastic greenhouse. Maximum diurnal air temperature inside plastic greenhouse ranged between 25.1 and 32.7$^{\circ}C$, and the average of nocturnal air temperature inside plastic greenhouse maintained at 18$^{\circ}C$ in winter season. Also the minimum diurnal relative humidity ranged between 50 and 55%, and the maximum nocturnal relative humidity ranged between 84 to 87%. At a depth of 15cm from soil surface, the average soil temperature maintained at 25.6$^{\circ}C$ for under-ground heating, and appeared to 17.4$^{\circ}C$ for unheated condition. Although the tension of soil moisture just after irrigation sharply decreased to pF 1.5, the tension of soil moisture at the depth of 15cm maintained at pF 2.0~2.2. It is suggested that the tension of soil moisture at the depth of 15cm might be used as the standard for the determination of irrigation set point. Effective drainage system is needed to prevent the spindly and succulent growth of vine trees grown in restricted root zone system.

  • PDF

A Study on the Combustion Characteristics of Diffusion Flame with the Fuel Injection Condition (연료분출 조건에 따른 확산화염의 연소특성에 관한 연구)

  • Lee, Sung-No;An, Jin-Geun
    • Clean Technology
    • /
    • v.13 no.4
    • /
    • pp.300-307
    • /
    • 2007
  • The combustion characteristics of diffusion flame formed in the wake of a cylindrical stabilizer with varying fuel injection angle were studied. This study was performed by measuring the flame stability limits, lengths and temperatures of recirculation zones of flames, turbulence intensity in the wake of stabilizer, and concentration distribution of combustion gas, and by taking photographs of flames. The flame stability limits are dependent on fuel injection angle and main air velocity. The length and temperature of recirculation zone are dependent on fuel injection angle. As the length of the recirculation zone is decreased, the flame shows more stable behavior. The temperature of recirculation zone has a maximum value at the condition of theoretical mixture. The flame stability is enhanced when the temperature in the recirculation zone decreases. The turbulence intensity in the wake of stabilizer is independent of the fuel injection angle, but it is affected by stabilizer itself and main air flow condition. If the stabilization characteristics of flame is good, the concentration of $C_3H_8$ is high, but the concentration of $CO_2$ is low at the boundary of recirculation zone. The combustion characteristics of diffusion flame can be controlled by changing the fuel injection angles. The appropriate fuel injection angle should be selected to get high combustion efficiency, high load power, low environmental pollution, and clean combustion condition of fuel.

  • PDF

A Study on the Domestic Appllication of the Concept of Seed Transfer Zone in the U.S (미국 잠정종자이동구역(Seed transfer zone) 개념의 국내 적용 방안)

  • Kim, Chae-Young;Kim, Whee-Moon;Song, Won-Kyong;Choi, Jae-Yong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.24 no.2
    • /
    • pp.39-56
    • /
    • 2021
  • The seed zone is a map that describes the areas where plant material can be transferred with little risk for properly adapting to a new location. The seed zone study is largely divided into studies based on genetic data and studies based on climatic data. Can be. This study was conducted to establish a temporary domestic seed zone applicable to the entire Korean Peninsula and evaluate its possibility based on the US climate-based seed zone establishment methodology. The temporary seed zone was constructed in the same way as the US case by superimposing the data obtained by dividing the winter minimum temperature into 12 grades and the data obtained by dividing the annual heat: moisture index into 6 grades. As a result of the analysis, 65 temporary seed zones were formed throughout the Korean Peninsula, and the areas of the seed zones representing the smallest and largest areas were 3.0km2 and 29,423.0km2, respectively, and it was confirmed that they had an average size of about 5,064.9km2. Temporary seed zones applied in Korea show a pattern of changes in temperature according to the relatively horizontal forest zone, and it was confirmed that the area where the Baekdu-daegan ecological axis is located has a tendency to show lower dryness than other areas. This study applied the US climate-based seed zone methodology in Korea as a pilot, and confirmed the climatic similarity across the Korean Peninsula. Furthermore, it is expected to provide an optimal seed map that improves the success rate of restoration in the future by revising the seed zone grade suitable for the domestic environment in consideration of the results of this study and the possibility of seed adaptation to the field survey and environmental space.

Temperature Reduction with the Location of Window in a Turbine Building of Power Plant (발전소 터빈건물의 창문 위치에 따른 온도저감)

  • Ha, J.S.;Kim, T.K.;Jeong, K.H.
    • Journal of Energy Engineering
    • /
    • v.25 no.4
    • /
    • pp.207-213
    • /
    • 2016
  • In this study, a thermal flow analysis was performed using the commercial code, ANSYS-FLUENT to reduce room temperature in a turbine building of power plant. The selected control volume of the operating floor and deaerator floor for the turbine building was respectively modelled. The skylight windows at the deaerator floor were employed for ventilation windows. Through the study, in the first we found that all window close of the deaerator floor is one alternative for reducing the temperature of the operating floor. The next thing we knew that for windows open at the front of the deaerator floor, the temperature of deaerator zone and crane zone can be respectively reduced to $1.5^{\circ}C$ and $1.6^{\circ}C$. In addition, for windows close at the rear of the deaerator floor, the temperature of deaerator zone and crane zone can be respectively reduced to 1.4 and $0.5^{\circ}C$. Therefore, it was concluded that a better choice is to open the front windows at deaerator floor to reduce the temperature of the entire deaerator floor having high temperature.