• Title/Summary/Keyword: temperature stable characteristics

Search Result 961, Processing Time 0.029 seconds

Development of a simulation method for the subsea production system

  • Woo, Jong Hun;Nam, Jong Ho;Ko, Kwang Hee
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.3
    • /
    • pp.173-186
    • /
    • 2014
  • The failure of a subsea production plant could induce fatal hazards and enormous loss to human lives, environments, and properties. Thus, for securing integrated design safety, core source technologies include subsea system integration that has high safety and reliability and a technique for the subsea flow assurance of subsea production plant and subsea pipeline network fluids. The evaluation of subsea flow assurance needs to be performed considering the performance of a subsea production plant, reservoir production characteristics, and the flow characteristics of multiphase fluids. A subsea production plant is installed in the deep sea, and thus is exposed to a high-pressure/ low-temperature environment. Accordingly, hydrates could be formed inside a subsea production plant or within a subsea pipeline network. These hydrates could induce serious damages by blocking the flow of subsea fluids. In this study, a simulation technology, which can visualize the system configuration of subsea production processes and can simulate stable flow of fluids, was introduced. Most existing subsea simulations have performed the analysis of dynamic behaviors for the installation of subsea facilities or the flow analysis of multiphase flow within pipes. The above studies occupy extensive research areas of the subsea field. In this study, with the goal of simulating the configuration of an entire deep sea production system compared to existing studies, a DES-based simulation technology, which can logically simulate oil production processes in the deep sea, was analyzed, and an implementation example of a simplified case was introduced.

Electrical Property Changes of $\textrm{NO}_X$ Sensitive $\textrm{WO}_3$ Thin Films as Applied DC Voltages on 8YSZ Substrate (8YSZ 기판에 증착한 $\textrm{WO}_3$ 박막의 DC 전압에 따른 $\textrm{NO}_X$ 감지특성)

  • 전춘배;박기철
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.36T no.1
    • /
    • pp.8-12
    • /
    • 1999
  • $\textrm{WO}_3$ semiconductive film, which is known to have a sensitivity on $\textrm{NO}_X$ gas was prepared on 8YSZ (8% Yttria stabilized $\textrm{ZrO}_2$) ionic conductor substrate that has oxygen ion pumping effect. Microstructure and electrical properity, especially $\textrm{NO}_X$ sensitivity as a function of DC voltage applied to 8YSZ substrate was examined. When the $\textrm{WO}_3$ film was annealed, it showed amorphous structure, while crystallization was occurred at $600^{\circ}$C revealing orthorhombic phase of $\textrm{WO}_3$. As the annealing temperature increases, (111) and (001) peaks of $\textrm{WO}_3$ film was enhanced. At $400^{\circ}C$ when DC voltage was applied, comparing with no DC bias, more stable and large response characteristics was showed, and the best sensitivity was observed at 2V. Recovery characteristics of NO gas was much better that that of $\textrm{NO}_2$ gas.

  • PDF

Effects of transition layer in SiO2/SiC by the plasma-assisted oxidation

  • Kim, Dae-Gyeong;Gang, Yu-Seon;Gang, Hang-Gyu;Baek, Min;O, Seung-Hun;Jo, Sang-Wan;Jo, Man-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.193.2-193.2
    • /
    • 2016
  • We evaluate the change in defects in the oxidized SiO2 grown on 4H-SiC (0001) by plasma assisted oxidation, by comparing with that of conventional thermal oxide. In order to investigate the changes in the electronic structure and electrical characteristics of the interfacial reaction between the thin SiO2 and SiC, x-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), DFT calculation and electrical measurements were carried out. We observed that the direct plasma oxide grown at the room temperature and rapid processing time (300 s) has enhanced electrical characteristics (frequency dispersion, hysteresis and interface trap density) than conventional thermal oxide and suppressed interfacial defect state. The decrease in defect state in conduction band edge and stress-induced leakage current (SILC) clearly indicate that plasma oxidation process improves SiO2 quality due to the reduced transition layer and energetically most stable interfacial state between SiO2/SiC controlled by the interstitial C.

  • PDF

Characteristics of $endo-{\beta}-1,3-glucanase$ from green malt (녹맥아에서 추출한 $endo-{\beta}-1,3-glucanase$의 효소학적 성질)

  • Son, Bong-Soo;Sung, Nack-Kie
    • Applied Biological Chemistry
    • /
    • v.35 no.3
    • /
    • pp.165-169
    • /
    • 1992
  • Two types of $endo-{\beta}-1,3-glucanases$ were purified from green malt and their basic characteristics were studied. Molecular weights of glucanase I and glucanase II were estimated, by electrophoresis, to be 35,000 and 28,000, respectively. Purified glucanase I and II showed the highest activity at pH $5.0{\sim}7.0$ and $5.0{\sim}8.0$, respectively. The optimal temperature of purified glucanase I and II was $40^{\circ}C$. Purified glucanase I and glucanase II were stable at $40^{\circ}$ for 60 min and at $50^{\circ}$ for 30 min. All enzymes were inactivited by $AgNO_3$ and $HgCl_2$ while those were not activated by various compounds tried. Km values of glucanase I and II were 1.03 mg/ml, 1.20 mg/ml, respectively.

  • PDF

The study on the variaty of anode materials, $C_6Li$ for secondary battery (2차 전지 음극 재료용 $C_6Li$의 다양화에 관한 연구)

  • 오원춘;김범수;이영훈;고영신
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.4
    • /
    • pp.660-666
    • /
    • 1998
  • We discussed structure, energy state, characteristics of thermal stability, and electrochemical properties of Li-GFICs, Li-PCICs, and Li-AGICs during the intercalation process. According to X-ray diffraction patterns, we observed phase of stage 2 mainly from Li-GFICs, while stage 1 phase as well as stage 2 from Li-PCICs. For the structure of Li-AGICs, stage 1 phase was dominant, but it was not possible to obtain pure stage 1 compound probably due to structural characteristics of artificial graphite. We measured energy state of the compounds to stage stability, and revealed that Li-AGICs and Li-GFICs were in more stable state than Li-PCICs. Therefore, those two compounds could be excellent candidate for energy reserve material. From the study of thermal degradation, Li-GFICs showed strong exothermic reaction at around 300 and $400^{\circ}C$. In the study of thermal stability of Li-AGIC at various temperatures, we observed that lithium was not completely deintercalated and high stage was maintained even at high temperature. In the case of charge, discharge, and electrochemical studies, Li-GFICs showed the best results.

  • PDF

A Study of Greenish Pigments from Rhodopseudomonas viridis by Acetone Extraction: Characteristics of Potential Food Colorant (Acetone 추출한 Rhodopseudomonas viridis 녹색색소에 대한 연구: 식용색소로서의 일반적 성질)

  • Kim, Yong-Hwan;Lee, Sang-Seob
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.93-97
    • /
    • 1994
  • A study of physical and chemical characteristics of pigments from Rhodopseudomonas viridis DSM 133 was carried out for development of natural greenish colorant. Through visible absorption scanning, it showed three main absorption peaks at 378, 414 and 677 nm with three minor peaks at 510, 540 and 618nm, and it was shown to be greenish color. These pigments were more stabilized in alkaline solutions than in acid of between pH 6 and 9, and it was shown to be stabilized at the temperature below $40^{\circ}C$. In the presence of light and oxygen, the stability of pigments rapidly degraded, and it became unstable in the presence of metal ion such as $Fe^{3+}$ and $Al^{3+}$. But in the presence of $Cu^{2+}$ were very stable. On the result of TLC analysis, pigments were shown to be composed of four color fractions and main color fractions were F-4 and F-2.

  • PDF

An Experimental Study on the Heat Transfer Characteristics to Enhance the Artificial Hydrate Formation Performance (전열특성을 이용한 가스하이드레이트 인공제조 성능향상에 대한 실험적 연구)

  • Shin, Chang-Hoon;Park, Seoung-Su;Kwon, Ok-Bae;Shin, Kwang-Sik;Choi, Yang-Mi;Lee, Jeong-Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.515-518
    • /
    • 2007
  • Gas hydrates are ice-like crystalline compounds that form under low temperature and elevated pressure conditions. Recently, gas hydrates present a novel means for natural gas storage and transportation with potential applications in a wide variety of areas. An important property of hydrates that makes them attractive for use in gas storage and transportation is their very high gas-to-sol id ratio. In addition to the high gas content, gas hydrates are remarkably stable. The main barrier to development of gas hydrate technology is the lack of an effective mass production method of gas hydrate in solid form. In this study, some performance comparison among several cases classified by different volume sizes of solution were carried to identify the characteristics due to the volume increment. And it is found that one of the main reasons disturbing hydrate formation is related to the lack of cooling heat transfer due to the volume increase of the solution. So, three kinds of heat transfer plates which have different shapes and cross sectional areas were made and tested for the performance comparison following to the shape and area of each plate. Finally it is clarified that the heat transfer is one of the major factors effecting hydrate formation performance and the installation of heat transfer plate can enhance the formation performance especially not in terms of the quantity but the speed.

  • PDF

Purification and partial characteristics of intracellular aminopeptidase from micrococcus sp. LL3 (Micrococcus sp. LL3가 생성하는 intracellular aminopeptidase의 특성 및 정제)

  • Lee, Si-Kyung;Joo, Hyun-Kyu
    • Applied Biological Chemistry
    • /
    • v.36 no.6
    • /
    • pp.539-546
    • /
    • 1993
  • This paper describes the purification and partial characteristics of aminopeptidase from Microccus sp. LL3 to utilize the microorganism as a potential agent for industrial application for the purpose of shortening ripening period of cheddar cheese. The optimal temperature and pH for enzyme activity were $35^{\circ}C$ and 7.0, respectively for L-leucine-p-nitroanilide as substrate. The enzyme remained stable for 10 minutes up to $50^{\circ}C$. The activity of aminopeptidase was stimulated by $Mg^{++}$ ion but strongly inhibited by $Hg^{++}$, metal complexing reagents, ethylenediaminetetraacetate (EDTA) and 1,10-phenanthroline. The enzyme was thought to be metallopeptidase. This enzyme had a broad substrate specificity, but was inactive on peptide with arginine as N-terminal amino acid. An intracellular aminopeptidase from Micrococcu sp. LL3 was purified by chromatography on DEAE-Sephacel and filtration on Sepacryl S-300. The enzyme has a molecular weight of 43,500.

  • PDF

Studies on Penicillinase Produced by a Streptomyces sp. (Part 2) Enzymatic Characteristics of the Penicillinase Produced by Streptomyces sp. YS-40. (Streptonyces sp. 가 생산하는 Penicillinase에 관한 연구 (제2보) Strepteptomyces sp. YS-40이 생산하는 Penicillinase의 효소학적 성질)

  • 도재호;김상달
    • Microbiology and Biotechnology Letters
    • /
    • v.10 no.3
    • /
    • pp.185-190
    • /
    • 1982
  • A strain of Streptomyces sp. (YS-40) which was able to produce penicillinase, was isolated from soil and the enzymatic characteristics of this enzyme were investigated. The crude enzyme was obtained with the fractionation by 80 % cold acetone. The optimal temperature and pH of this enzyme was 45$^{\circ}C$ and 5.0 respectively. The stable pH range of the enzyme was between pH 5.5 and 8.0 at 37$^{\circ}C$. By heat treatment at 6$0^{\circ}C$ and 8$0^{\circ}C$ for 10 min, the remained relative activities were about 50%, 30% respectively. The activity of the enzyme was inhibited by Cu$^{++}$, $_Mn^{++}$, Zn$^{++}$ but Co$^{++}$, Li$^{++}$, $Ca^{++}$, $Mg^{++}$ $Ba^{++}$ did not affect. Among 11 chemical reagents, ethylenedi aminetetra-acetic acid disodium salt (EDTA-2Na), sodium dodecyl sulfate (SDS) and sodium fluoride inhibited the enzyme activity.

  • PDF

Synthesis and Formation Mechanism of Cobalt Doped Willemite Blue Pigments (Co-Doped Willemite 파란색 안료의 합성과 생성기구)

  • Hwang, Dong-Ha;Han, Kyong-Sop;Lee, Byung-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.6
    • /
    • pp.603-607
    • /
    • 2010
  • Turquoise blue pigment of Vanadium-zircon blue (DCMA number 14-42-2), which was already commercialized, was stable to be reproduced but insufficient to give strong blue. However, it possible to obtain more intense blue by partially substituting cobalt ions into the willemite($Zn_2SiO_4$) lattice classified into DCMA number 7-10-2 for blue ceramic pigment. By the composition of willemite $Co_xZn_{2-x}SiO_4$(X=0.01, 0.03, 0.05, 0.07, 0.09 mole), this study used reagent grade zinc oxide, cobalt oxide and silicon dioxide as starting materials, carrying out the synthesis with solid reaction method by adding $H_3BO_3$ as a mineralizer. The firing temperature was between $1200^{\circ}C$ and $1400^{\circ}C$. The characteristics of synthesized pigment were analyzed by X-ray diffraction, Raman spectroscopy and SEM and the characteristics of color tones were analyzed by UV-Vis spectroscopy and CIE-$L^*a^*b^*$ measurement. As a result, the optimal composition was $Zn_{1.95}Co_{0.05}$ with 1wt% of $H_3BO_3$ as a mineralizer and firing condition was $1350^{\circ}C$/3 h. $L^*a^*b^*$ value was 29.25, 41.03, -59.93 for on glaze pigment and 37.03, 36.41, -60.03 for under glaze pigment.