• Title/Summary/Keyword: temperature stable characteristics

Search Result 962, Processing Time 0.029 seconds

Unstructured Finite-Volume Analysis of Vaporization Characteristics of Fuel Droplets in Laminar Flow Field (비정렬 유한체적법을 이용한 유동장 내의 연료액적 증발 특성 해석)

  • Kim, T.J.;Kim, Y.M.;Sohn, J.L.
    • Journal of ILASS-Korea
    • /
    • v.5 no.1
    • /
    • pp.13-22
    • /
    • 2000
  • The present study has numerically analyzed the vaporization characteristics of fuel droplets in the high temperature convective flow field. The axisymmetric governing equations for mass, momentum, energy, and species are solved by an iterative and implicite unstructured finite-volume method. The moving boundary due to vaporization is handled by the deformable unstructured grid technique. The pressure-velocity coupling in the density-variable flows is treated by the SIMPLEC algorithm. In terms of the matrix solver, Bi-CGSTAB is employed for the numerically efficient and stable convergence. The n-decane is used as a liquid fuel and the initial droplet temperature is 300K. Computations are performed for the nonevaporating and evaporating droplets with the relative interphase velocity(25m/s). The unsteady vaporization process has been simulated up to the nondimensional time, 25. Numerical results indicate that the mathematical model developed in this study succesfully simulates the main features of the droplet vaporization process in the convective environment.

  • PDF

Preparation and Characterization of CdSe nanoparticle for Solar Cell application (태양전지용 CdSe 나노입자의 합성)

  • Kim, Shin-Ho;Park, Myoung-Guk;Lee, Bo-Ram;Lee, Hyun-Ju;Kim, Yang-Do
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.318-321
    • /
    • 2007
  • CdSe nanoparticles were prepared by chemical solution methods using $CdCl_2{\cdot}4H_2O$ (or $Cd(NO_3)_ 2{\cdot}4H_2O$) and $Na_2SeSO_3$. The characteristics of CdSe nanoparticles were controlled by the react ion time, reaction temperature and reaction method as well as the surfactants. Cetyltrimethyl ammonium bromide(CTAB) was used as a capping agent to control the chemical reactions in aqueous solution. Polyvinylalcohol(PVA) was used as a templet in sono-chemical method. CdSe nanoparticles synthesized in aqueous solution showed homogeneous size distribution with relatively stable surface. CdSe nanoparticles synthesized in non-aqueous solution containing diethanolamine(DEA) showed the structure transformation from cubic to hexagonal as the reduction temperature increased from 80 to $160^{\circ}C$. Core shell CdSe was synthesized by sono-chemical method. Characteristics of CdSe nanoparticles were analyzed using transmission electron microscopy(TEM), x-ray photoelectron spectroscopy(XPS), x-ray diffraction(XRD), UV-Vis absorption spectra, fourier transform infrared spectroscopy(FT-IR) and photoluminescence spectra spectroscopy(PL). This paper presents simple routes to prepare CdSe nanoparticles for solar cell applications.

  • PDF

Evaluation of Life Span for Al2O3 Nano Tube Formed by Anodizing with Current Density

  • Lee, Seung-Jun;Kim, Seong-Jong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.148-148
    • /
    • 2017
  • Surface modification is a type of mechanical manipulation skills to achieve extensive aims including corrosion control, exterior appearance, abrasion resistance, electrical insulation and electrical conductivity of substrate materials by generating a protective surface using electrical, physical and chemical treatment on the surface of parts made from metallic materials. Such surface modification includes plating, anodizing, chemical conversion treatment, painting, lining, coating and surface hardening; this study conducted cavitation experiment to assess improvement of durability using anodizing. In order to observe surface characteristics with applied current density, the electrolyte temperature, concentration was maintained at constant condition. To prevent hindrance of stable growth of oxide layer due to local temperature increase during the experiment, stirring was maintained at constant speed. In addition, using galvanostatic method, it was maintained at processing time of 40minutes for 10 to $30mA/cm^2$. The cavitation experiment was carried out with an ultra sonic vibratory apparatus using piezo-electric effect with modified ASTM-G32. The peak-to-peak amplitude was $30{\mu}m$ and the distance between the horn tip and specimen was 1mm. The specimen after the experiment was cleaned in an ultrasonic bath, dried in a vacuum oven for more than 24 hours, and weighed with an electric balance. The surface damage morphology was observed with 3D analysis microscope. As a result of the study, differences were observed surface hardness and anti-cavitation characteristics depending on the development of oxide film with the anodizing process time.

  • PDF

An Experimental Study on the Performance Characteristics of Cooling System for Aircraft External Reconnaissance Stores (항공기 외장형 정찰 장비용 냉각 시스템의 성능 특성에 관한 실험적 연구)

  • Jung, Daeyoon;Lee, Hang Bok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.74-80
    • /
    • 2013
  • In this paper, we have proposed a vapor cycle refrigeration system as a cooling system to provide cooling air to the aircraft external reconnaissance stores. In the proposed vapor cycle system, receiver which prevents refrigerant from subcooling was eliminated and thermal expansion valve was replaced with electronic expansion valve. The vapor cycle refrigeration system is aimed to provide cooling air to the reconnaissance stores which is added to the aircraft in the form of external store. The wide temperature range of ambient air from the flight conditions can decrease the cooling performance and can make the refrigeration system unstable in low ambient temperature. Performance characteristics of the vapor cycle refrigeration system has been experimented under air conditions which is derived from the flight envelope. From the experiments, the vapor cycle refrigeration system has been proved to provide enough cooling air to the reconnaissance equipment and to be stable under all the flight conditions.

An Experimental Study on the Heat Transfer Characteristics of a Grooved Heat Pipe for Solar Collector (그루브형 히트파이프를 갖는 이중진공관형 태양열 집열기의 열전달특성에 관한 실험적 연구)

  • Kim, Byoung-Gi;Chung, Kyung-Taek;Jang, Hwan-Young;Suh, Jeon-Se
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.965-969
    • /
    • 2006
  • This study investigated heat transfer characteristics between absorber and heat pipe used to extract heat from concentric evacuated tubular collectors. In order to experiment, T-type thermocouples are attached to a evaporator of heat pipe and absorber of inner tube. A wall temperature distribution of absorber and heat pipe were carried out by experimental method under actual various ir-radiance and outdoor conditions. As a result, As to increase an irradiance, a wall temperature of absorber and heat pipe is gradually increased. The heat pipe was required about 20min to obtain steady state operation after start up and operates stable during various irradiance conditions. And the collector efficiency was about $50{\sim}70%$ when a mass flow rate is about $1.3{\ell}/min$.

  • PDF

Thermal Degradation Characteristics of Carbon Tetrachloride in Excess Hydrogen Atmosphere (과잉수소 반응조건하에서 사염화탄소의 고온 분해반응 특성 연구)

  • Won, Yang-Soo;Jun, Kwan-Soo;Choi, Seong-Pil
    • Journal of Environmental Science International
    • /
    • v.5 no.5
    • /
    • pp.569-577
    • /
    • 1996
  • pure compound chloromethanes; methyl chloride, methylene chloride, chloroform and The carbon tetrachloride were used as a model of chlorocarbon system with Cl/H ratio to investigate thermal stability and hydrodechlorination process of carbon tetrachloride under excess hydrogen atmosphere. The parent thermal stability on basis of temperature required for 99% destruction at 1 second no was evaluated as $875^{\circ}C$ for $CH_3Cl$, $780^{\circ}C$ for $CH_2Cl_2$, $675^{\circ}C$ for $CHCl_3$ and $635^{\circ}C$ for $CCl_4$. Chloroform was thermally less stable than $CCl_4$ at fairly low temperatures $(<570^{\circ}C).$ The lion of $CCl_4$ became more sensitive to increasing temperature, and $CCl_4$ was degraded CHCl3 at above $570^{\circ}C.$ The number and quantity of chlorinated products decreases with increasing temperature for the Product distribution of $CCl_4$ decomposition reaction system. Formation of non-chlorinated hydrocarbons such as $CH_4$, $C_2H_4$ and C_2H_6$ increased as the temperature rise and particularly small amount of methyl chloride was observed above $850^{\circ}C$ in $CC1_4$/$H_2$ reaction system. The less chlorinated products are more stable, with methyl chloride the most stable chlorocarbon in this reaction system.

  • PDF

Dynamics of Air Temperature, Velocity and Ammonia Emissions in Enclosed and Conventional Pig Housing Systems

  • Song, J.I.;Park, K.H.;Jeon, J.H.;Choi, H.L.;Barroga, A.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.3
    • /
    • pp.433-442
    • /
    • 2013
  • This study aimed to compare the dynamics of air temperature and velocity under two different ventilation and housing systems during summer and winter in Korea. The $NH_3$ concentration of both housing systems was also investigated in relation to the pig's growth. The ventilation systems used were; negative pressure type for the enclosed pig house (EPH) and natural airflow for the conventional pig house (CPH). Against a highly fluctuating outdoor temperature, the EPH was able to maintain a stable temperature at 24.8 to $29.1^{\circ}C$ during summer and 17.9 to $23.1^{\circ}C$ during winter whilst the CPH had a wider temperature variance during summer at 24.7 to $32.3^{\circ}C$. However, the temperature fluctuation of the CPH during winter was almost the same with that of EPH at 14.5 to $18.2^{\circ}C$. The NH3 levels in the CPH ranged from 9.31 to 16.9 mg/L during summer and 5.1 to 19.7 mg/L during winter whilst that of the EPH pig house was 7.9 to 16.1 mg/L and 3.7 to 9.6 mg/L during summer and winter, respectively. These values were less than the critical ammonia level for pigs with the EPH maintaining a lower level than the CPH in both winter and summer. The air velocity at pig nose level in the EPH during summer was 0.23 m/s, enough to provide comfort because of the unique design of the inlet feature. However, no air movement was observed in almost all the lower portions of the CPH during winter because of the absence of an inlet feature. There was a significant improvement in weight gain and feed intake of pigs reared in the EPH compared to the CPH (p<0.05). These findings proved that despite the difference in the housing systems, a stable indoor temperature was necessary to minimize the impact of an avoidable and highly fluctuating outdoor temperature. The EPH consistently maintained an effective indoor airspeed irrespective of season; however the CPH had defective and stagnant air at pig nose level during winter. Characteristics of airflow direction and pattern were consistent relative to housing system during both summer and winter but not of airspeed. The ideal air velocity measurement favored the EPH and therefore can be appropriate for the Korean environment. Further emphasis on its cost effectiveness will be the subject of future investigations.

Humidity-Sensitive Characteristics of Hydroxyapatite Ceramics (Hydroxyapatite계 세라믹스의 감습특성에 관한 연구)

  • Yuk, Jae-Ho;Cho, Ki-Sun
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.43-48
    • /
    • 1997
  • $Ca_{10}(PO_{4})_{6}(OH)_{2}$ humidity-sensitive devices were fabricated by a solid reaction method, and their humidity-sensitive characteristics were investigated. The impedance decreases with increasing relative humidity, and the good sensitivity is shown in which impedance changes by about $10^{2}\;{\Omega}$ over the region of $30{\sim}90\;%$. Also, It is shown that the humidity sensitivity is stable in temperature variations and long time exposures to the humidity. The sensitivity of the specimens is not affected by a heat treatment, and the hysteresis in one humidity cycle is negligible.

  • PDF

Combustion Characteristics in a Two-staged Microcombustor for a Micro Reformer System (초소형 리포머용 2단 초소형 연소기 내 연소특성에 관한 연구)

  • Kim, Ki-Baek;Kwon, Oh-Chae
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2238-2243
    • /
    • 2007
  • A new microcombustor configuration for a micro fuel-cell reformer integrated with a micro evaporator was studied experimentally and computationally. The present microcombustor is simply cylindrical to be easily fabricated but two-staged, expending downstream, to feasibly control ignition and stable burning. Results show that the aspect ratio of the first stage and the wall thickness of the microcombustors substantially affect ignition and thermal characteristics. For the optimized design conditions, a premixed microflame was easily ignited in the expanded second stage combustor, moved into the smaller first stage combustor, and finally stabilized therein. The measured and predicted temperature distributions across the microcombustor walls indicated that heat generated in the microcombustor is well transferred. Thus, the present microcombustor configuration could be applied to the practical micro reformers integrated with a micro evaporator for use of fuel cells.

  • PDF

Analysis of steady-states and dynamic characteristics of a continuous MMA/MA copolymerization reactor (연속식 MMA/MA 공중합 반응기의 정상상태 및 동특성 해석)

  • 박명준;안성모;이현구
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.309-312
    • /
    • 1997
  • The dynamic characteristics of a continuous MMA/MA free-radical solution copolymerization reactor were studied. A mathematical model was developed and kinetic parameters which had been estimated in the previous work were used. With this model, bifurcation diagrams were constructed with various parameters as the bifurcation parameter to predict the region of stable operating conditions and to enhance the controller performance. It was shown that the steady-state multiplicity existed over wide ranges of residence time and jacket inlet temperature. Periodic solution branches were found to emanated from Hopf bifurcation points. Under certain conditions isola was also observed, which would result in poor performance of feedback controllers.

  • PDF