• Title/Summary/Keyword: temperature shock

Search Result 739, Processing Time 0.025 seconds

Physiological Changes of Juvenile Abalone, Haliotis sieboldii Exposed to Acute Water-temperature Stress (급격한 수온 스트레스에 따른 시볼트전복, Haliotis sieboldii 치패의 생리적 변화)

  • Kim Tae-Hyung;Kim Kyung-Ju;Choe Mi-Kyung;Yeo In-Kyu
    • Journal of Aquaculture
    • /
    • v.19 no.2
    • /
    • pp.77-83
    • /
    • 2006
  • This study was conducted to investigate changes of hemolymph count, antioxidant enzyme activities (catalase: CAT and superoxide dismutase: SOD) and Heat Shock Protein 70 (HSP70) mRNA in hemolymph, hepatopancreas and gill of abalone (Haliotis sieboldii) exposed to various water temperatures. Abalones were exposed to 10, 15, 20, 25 or $30^{\circ}C$ for 0, 6, 12, 24 or 48 hours. Survival rate of abalone was 100% at 10, 15, 20 and $25^{\circ}C$, but 0% at $30^{\circ}C$. Hemolymph counts increased at lower water temperatures (10 and $15^{\circ}C$) and decreased at $30^{\circ}C$. SOD activity decreased immediately after exposure to lower or higher water temperatures compared to the control ($20^{\circ}C$) with an exception at $30^{\circ}C$ where the activity increased. At lower temperatures, SOD activity rose high after 24 hours, but decreased again at 48 hours. At $25^{\circ}C$, it decreased compared to the control. CAT activity decreased immediately after exposure to 10 or $25^{\circ}C$ compared to the control, and then was recovered to the initial level after increment. At $15^{\circ}C$, CAT activity was high after 6 hours, and then was recovered to the initial level after increment. At $30^{\circ}C$, the activity decreased throughout the experiment. The HSP70 mRNA expression in gill increased at lower temperatures compared to the control ($20^{\circ}C$) and $25^{\circ}C$. In this study, rapid change of wale, temperature caused stress response in abalone which had been raised at $20^{\circ}C$. At molecular level, HSP70 was expressed rapidly, but antioxidant enzymes like SOD and CAT were expressed later than HSP70. At 15 and $25^{\circ}C$ of water temperatures, the HSP70, SOD and CAT expression were stable with time. However, at $30^{\circ}C$, all abalone died possibly because they could not develop resistance to high temperature.

Numerical Analysis of Unstable Combustion Flows in Normal Injection Supersonic Combustor with a Cavity (공동이 있는 수직 분사 초음속 연소기 내의 불안정 연소유동 해석)

  • Jeong-Yeol Choi;Vigor Yang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.91-93
    • /
    • 2003
  • A comprehensive numerical study is carried out to investigate for the understanding of the flow evolution and flame development in a supersonic combustor with normal injection of ncumally injecting hydrogen in airsupersonic flows. The formulation treats the complete conservation equations of mass, momentum, energy, and species concentration for a multi-component chemically reacting system. For the numerical simulation of supersonic combustion, multi-species Navier-Stokes equations and detailed chemistry of H2-Air is considered. It also accommodates a finite-rate chemical kinetics mechanism of hydrogen-air combustion GRI-Mech. 2.11[1], which consists of nine species and twenty-five reaction steps. Turbulence closure is achieved by means of a k-two-equation model (2). The governing equations are spatially discretized using a finite-volume approach, and temporally integrated by means of a second-order accurate implicit scheme (3-5).The supersonic combustor consists of a flat channel of 10 cm height and a fuel-injection slit of 0.1 cm width located at 10 cm downstream of the inlet. A cavity of 5 cm height and 20 cm width is installed at 15 cm downstream of the injection slit. A total of 936160 grids are used for the main-combustor flow passage, and 159161 grids for the cavity. The grids are clustered in the flow direction near the fuel injector and cavity, as well as in the vertical direction near the bottom wall. The no-slip and adiabatic conditions are assumed throughout the entire wall boundary. As a specific example, the inflow Mach number is assumed to be 3, and the temperature and pressure are 600 K and 0.1 MPa, respectively. Gaseous hydrogen at a temperature of 151.5 K is injected normal to the wall from a choked injector.A series of calculations were carried out by varying the fuel injection pressure from 0.5 to 1.5MPa. This amounts to changing the fuel mass flow rate or the overall equivalence ratio for different operating regimes. Figure 1 shows the instantaneous temperature fields in the supersonic combustor at four different conditions. The dark blue region represents the hot burned gases. At the fuel injection pressure of 0.5 MPa, the flame is stably anchored, but the flow field exhibits a high-amplitude oscillation. At the fuel injection pressure of 1.0 MPa, the Mach reflection occurs ahead of the injector. The interaction between the incoming air and the injection flow becomes much more complex, and the fuel/air mixing is strongly enhanced. The Mach reflection oscillates and results in a strong fluctuation in the combustor wall pressure. At the fuel injection pressure of 1.5MPa, the flow inside the combustor becomes nearly choked and the Mach reflection is displaced forward. The leading shock wave moves slowly toward the inlet, and eventually causes the combustor-upstart due to the thermal choking. The cavity appears to play a secondary role in driving the flow unsteadiness, in spite of its influence on the fuel/air mixing and flame evolution. Further investigation is necessary on this issue. The present study features detailed resolution of the flow and flame dynamics in the combustor, which was not typically available in most of the previous works. In particular, the oscillatory flow characteristics are captured at a scale sufficient to identify the underlying physical mechanisms. Much of the flow unsteadiness is not related to the cavity, but rather to the intrinsic unsteadiness in the flowfield, as also shown experimentally by Ben-Yakar et al. [6], The interactions between the unsteady flow and flame evolution may cause a large excursion of flow oscillation. The work appears to be the first of its kind in the numerical study of combustion oscillations in a supersonic combustor, although a similar phenomenon was previously reported experimentally. A more comprehensive discussion will be given in the final paper presented at the colloquium.

  • PDF

Sintering Properties of Renewed ${Al_2}{O_3}$Ceramics with Particle Size and Addition Amount of Recycling Powder (재활용원료의 첨가량과 입경에 따른 재생 ${Al_2}{O_3}$ 세라믹스의 소결 특성)

  • 신대용;한상목;김경남
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.12
    • /
    • pp.1123-1131
    • /
    • 2001
  • The sintering behaviors of the renewed $Al_2$O$_3$ceramics were investigated as functions of the addition amount and particle size of recycling $Al_2$O$_3$powder, such as crushed powder of structural $Al_2$O$_3$ceramics and waste $Al_2$O$_3$adsorbent, were investigated. Pure $Al_2$O$_3$sample was fabricated by sintered at 1,$650^{\circ}C$ for 5h and it was crushed into powder (-40${\mu}{\textrm}{m}$and +40${\mu}{\textrm}{m}$ in particle size) by thermal shock treatment and crushing. Then, 10~50wt% of crushed $Al_2$O$_3$powder and waste $Al_2$O$_3$adsorbent were mixed with pure $Al_2$O$_3$powder and were subjected to re-sintering to renewed $Al_2$O$_3$sample. The density and the 3-point bending strength increased with increasing the sintering temperature without regard to the addition amount and particle size of recycling $Al_2$O$_3$powder, and that of the samples at the same sintering temperature decreased with increasing the addition amount and particle size of recycling $Al_2$O$_3$powder. Samples over 200 Mpa of 3-point bending strength were obtained by mixing ~30wt% of crushed $Al_2$O$_3$powder(-40${\mu}{\textrm}{m}$), ~20wt% of crushed $Al_2$O$_3$powder (+40${\mu}{\textrm}{m}$) and 10wt% of waste $Al_2$O$_3$adsorbent. 5~20wt% of waste glass powder containing renewed $Al_2$O$_3$samples for densification were fabricated by sintered at 1200~1$650^{\circ}C$ for 5h. The temperature of maximum density and 3-point bending strength decreased with increasing the addition amount of waste glass powder, however, these samples at above 140$0^{\circ}C$ showed lower density and bending strength than renewed $Al_2$O$_3$samples. The addition of waste glass powder did not improved the densification of renewed $Al_2$O$_3$sample.

  • PDF

Growth Characteristics of Bay Scallop (Argopecten irradians) reared in the Southern East Sea (동해 남부해역에서 양식된 해만가리비 (Argopecten irradians) 의 성장 특성)

  • Kim, Young Dae;Lee, Chu;Shim, Jeong Min;Kim, Gi Seung;Choi, Jae-Suk;Nam, Myung-Mo
    • The Korean Journal of Malacology
    • /
    • v.31 no.2
    • /
    • pp.103-112
    • /
    • 2015
  • Bay scallop (Argopecten irradians) has been farmed only in the South Sea of Korea. East Sea Fisheries Research Institute (ESFRI) has developed bay scallop aquaculture technologies to extend its aquaculture area to the Southeast Sea of Korea. For the artificial spawning, the water temperature was maintained at $23^{\circ}C$. Over 100,000,000 eggs were spawned through artificial spawning inductions, such as air exposure and thermal shock by rising the water temperature. The fertilization rate was over 91% with nearly 94,000,000 fertilized eggs. The shape of fertilized eggs was spherical with an average diameter of $61.7{\pm}0.05{\mu}m(54.1-67.4{\mu}m)$. Five days after fertilization, the eggs developed into prodissoconch shell, and continuously grew into umbo stage and then umbones stage. After 8 days of fertilization, the size of larva became $179.7{\pm}8.4{\mu}m$ on average ($150.4-204.8{\mu}m$), and the larva formed a foot and an eye spot. The larvae grew to $235.4{\pm}9.7{\mu}m$ in 10 days and attached to adherence material, becoming juvenile bay scallop. The shells grew from 22.71 mm to 72.40 mm in 6 month (June-December). The total weight increased from 2.0 g to 32.7 g at the same period. The daily growth rates of young scallop were $0.35mm\;d^{-1}$ (Apr. to Jun.) and $0.41mm\;d^{-1}$ (Jun. to Aug.), which were comparable to those found in the South Sea. These findings suggest that the bay scallop aquaculture may be suitable in the Southeast Sea of Korea and may provide an additional crop to aquaculturists.

Design and Fabrication of 4-beam Silicon-Micro Piezoresistive Accelerometer for TPMS Application (TPMS용 4빔 실리콘 미세 압저항형 가속도센서의 설계 및 제작)

  • Park, Ki-Woong;Kim, Hyeon-Cheol
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.49 no.2
    • /
    • pp.1-8
    • /
    • 2012
  • This paper presents the accelerometer which is a key component of TPMS(Tire Pressure Monitoring System). Generally a piezoresistive accelerometer has characteristics of lower cost, better linearity and better immunity about the environmnet noise than a capacitive one. Three types of piezoresistive accelerometers are degined and simulated using ANSYS program. The best one is a piezoresistive sensor which is supported by four beams located at the center of the edge of the mass after comparing the characteristics of resonant frequency of the three types. Considering the sensor size and a simulated maximum stress and maximum displacement, the length of beams is set as $200{\mu}m$. The size of a piezoresistive accelerometer is $3.0mm{\times}3.0mm{\times}0.4mm$. The sensor output is characterized by measuring the output characteristic depending on angle. As a result the offset voltage of the accelerometer is 43.2 mV and its sensitivity is $42.5{\mu}V/V/g$. The temperature bias drift is measured. The shock durability of the sensor is 1500g and the measuring range is 0 ~ 60 g.

Effects of Functional Packaging Films on the Longevity of Cut Lily Oriental Siberia Exported (기능성 포장필름이 수출 절화 백합의 수명에 미치는 영향)

  • Ko, Euisuk;Song, Kihyeon;Cho, Suhyun;Jeon, Kyubae;Kim, Chanwoo;Kim, Jaineung
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.21 no.2
    • /
    • pp.55-60
    • /
    • 2015
  • Packaging of export cut lilies reduces physical damage during distribution like dropping, shock, vibration, compression and serves to protect from necrosis, microbial contamination and decomposition. Study on which packaging materials must be selected is necessary because it serves to direct effect maintaining quality and the degree of freshness. newspaper, perforated OPP film, Oriented Nylon film (ON), punched OPP film, OPP films are used in this study. Plant senescence of lilies was happened rapidly during storage at $25^{\circ}C$ rather than at $5^{\circ}C$. Also, water absorption, fresh weight at during storage $25^{\circ}C$ rather than at $5^{\circ}C$ In addition, fresh weight of lilies storage at $25^{\circ}C$ appears higher than at $5^{\circ}C$ all of the packaging materials except OPP because water absorption of lily storage at $5^{\circ}C$ appears higher than at $25^{\circ}C$, thereby suppressing the fresh weight reducing Also, effect on biological activity of lilies from shape of packaging material appears higher during storage at $5^{\circ}C$ than at $25^{\circ}C$. Compared with each packaging materials, newspaper packaging is the smallest effect on changes in biological activity of cut lilies during storage. Thus, the results demonstrate that flowering date are affected mainly by the storage temperature rather than packaging materials.

  • PDF

Effect of Hydrogen Sulfide Removal by Biofilter Seeded with Pseudomonas putida B2 (Pseudomonas putida B2가 접종된 Biofilter의 황화수소제거 효과)

  • Yoon, Ji-Yong;Lee, Soo-Choul;Kwon, Il;Sung, Chang-Keun
    • KSBB Journal
    • /
    • v.16 no.3
    • /
    • pp.286-289
    • /
    • 2001
  • A beterotrophic Pseudomonas putida B2 was used to treat of hydrogen sulfide containing gas. The experimental approach involved operating two indentical bench-scale biofilters with media consisting of a mixture of peatmoss, perlite and granular activated carbon(GAC). One column was seeded with Pseudomonas putida B2 and the other was left unseeded. The biofilter was operated for 16 days under EBRT for 20-40 sec, at a temperature of 25-30$^{\circ}C$ and a hydrogen sulfide concentration of 40-190 ppm. The biofilter inocculated with P.putida B2 exhibited high hydrogen sulfide removal efficiency, average of 95%, at a gydrogen sulfide concentration of 40-190 ppm (flow rate 3.6 L/min). However, at a shock loading of 190 ppm the biofiter showed a removal efficiency of 78.9% and the control only showed a removal efficiency of 31.6%. The critical load of this biofilter was 14.83 g/㎥hr, and the critical load of the control column was 4.93 g/㎥hr. These results suggest that P. putida B2 has the potential to be used as a $H_2S$ removal agent in a biofilter.

  • PDF

Optimal RNA Extraction Methods and Development of Synthetic Clones for Seven Strawberry Viruses (딸기바이러스 진단을 위한 최적의 RNA 추출 방법 및 주요 7종 딸기바이 러스의 진단법 개발)

  • Kwon, Sun-Jung;Yoon, Ju-Yeon;Cho, In-Sook;Chung, Bong-Nam
    • Research in Plant Disease
    • /
    • v.26 no.3
    • /
    • pp.170-178
    • /
    • 2020
  • Most strawberry viruses exist relatively low titers in tissues, and strawberry tissues include high levels of contamination by polysaccharides and phenolic compounds. These traits make the efficiency of strawberry diagnosis difficult. In this study, we tested different commercially available kits and reagents to secure optimal RNA extraction methods to determine virus detection from strawberry leaves. Total RNA was isolated from leaves of strawberry mottle virus (SMoV)-infected strawberry cultivar 'Mihong'. The efficiency of total RNA for virus diagnosis was confirmed through SMoV detection by one-step or two-step reverse transcription and polymerase chain reaction (RT-PCR). Among those, the RNeasy plant RNA kit was best to isolate RNA and the isolated RNA was good enough for further applications. To ensure a reliable detection for strawberry viruses, synthetic diagnosis clones for major seven strawberry viruses such as strawberry mild yellow edge virus, SMoV, strawberry latent ring spot virus, strawberry crinkle virus, strawberry pallidosis associated virus, strawberry vein banding virus and strawberry necrotic spot virus have been constructed. Based on the synthetic genes in each clone, primer sets for seven strawberry viruses were designed and tested an RT-PCR condition through a simultaneous application of the same annealing temperature that allowed to achieve an efficient and convenient diagnosis.

Histological changes on pyramidal layer of hippocampus following transient cerebral ischemia in gerbils (일시적 대뇌허혈에 의한 gerbil 해마의 피라밋층에 조직학적 변화)

  • Yang, Je-hoon;Koh, Phil-ok;Kwak, Soo-dong
    • Korean Journal of Veterinary Research
    • /
    • v.41 no.4
    • /
    • pp.467-475
    • /
    • 2001
  • Cardiac arrest, hypoxia, shock or seizure has been known to induce cerebral ischemia. This study was designed to investigate the effect of ischemia on hippocampal pyramidal layer induced by transient bilateral occlusion of the common carotid arteries. Mature Mongolian gerbils were sacrificed at days 2, 4, and 7 after carotid occlusion for 10 minutes. Sham-operated gerbils of control group were subjected to the same protocol except for carotid occlusion. During operation for ischemia, body temperature was maintained $37{\pm}0.5^{\circ}C$ in all gerbils. Paraffin-embedded brain tissue blocks were cut into coronal slices and stained with H-E stain or immunostain by TUNEL method. Neurons with the oval and prominent nucleus and without the eosinophilic cytoplasm in the subfield of hippocamapal pyramidal layer were calculated as to be viable neurons. Their chromatins were condensed or clumped. Their nuclei appeared multiangular or irregularly shrinked. The width of the pyramidal layer was reduced due to the loss of nuclei. At day 2 after reperfusion, some neurons in the CA1 subfield were slightly eosinophilic. But most neurons in the CA2 subfield were strongly eosinophilic. At day 4 day, most neurons in the CA1 subfield were severely damaged and at day 7 day, only a few survived neurons were observed. Survived neurons per longitudinal 1mm sector in the CA1, CA2, CA3, and CA4 subfields of pyramidal layer were investigated. At day 2, the mean numbers of pyramidal neurons in CA1, CA2, CA3, and CA4 subfiedls were 104.5/mm (54.3%), 51.0/mm (33.8%), 105.5/mm (85.6%), and 124.3/mm (93.5%) compared to the nonischemic control group, respectively. At day 4, the mean numbers of pyramidal neurons in CA1, CA2, CA3, and CA4 subfields were 3.2/mm (1.7%), 51.5/mm(34.2%), 95.3/mm (77.4%), and 112.5/mm (84.6%), respectively. At day 7, the mean numbers of pyramidal neurons in CA1, CA2, CA3, and CA4 subfiedls were 0.8/mm (0.4%), 5.7/mm(3.8%), 9.8/mm (8.0%), and 5.0/mm (3.7%), respectively. The mean numbers of apoptotic positive neurons in the CA1 subfield at day 2, 4, and 7 after reperfusion were 67.8/mm, 153.2/mm and 123.7/mm, respectively. These results suggest that the transient cerebral ischemia cause severe damages in most neurons at day 7 and that the prosminent apoptotic positive neurons in hippocampal pyramidal layer are the delayed neuronal death induced by ischemia.

  • PDF

Numerical Analysis on the Compressible Flow Characteristics of Supersonic Jet Caused by High-Pressure Pipe Rupture Using CFD (CFD를 이용한 고압파이프 파단 시 초음속제트의 압축성유동 특성에 관한 수치해석)

  • Jung, Jong-Kil;Kim, Kwang-Chu;Yoon, Jun-Kyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.10
    • /
    • pp.649-657
    • /
    • 2017
  • A rupture in a high-pressure pipe causes the fluid in the pipe to be discharged in the atmosphere at a high speed resulting in a supersonic jet that generates the compressible flow. This supersonic jet may display complicated and unsteady behavior in general. In this study, Computational Fluid Dynamics (CFD) analysis was performed to investigate the compressible flow generated by a supersonic jet ejected from a high-pressure pipe. A Shear Stress Transport (SST) turbulence model was selected to analyze the unsteady nature of the flow, which depends upon the various gases as well as the diameter of the pipe. In the CFD analysis, the basic boundary conditions were assumed to be as follows: pipe of diameter 10 cm, jet pressure ratio of 5, and an inlet gas temperature of 300 K. During the analysis, the behavior of the shockwave generated by a supersonic jet was observed and it was found that the blast wave was generated indirectly. The pressure wave characteristics of hydrogen gas, which possesses the smallest molecular mass, showed the shortest distance to the safety zone. There were no significant difference observed for nitrogen gas, air, and oxygen gas, which have similar molecular mass. In addition, an increase in the diameter of the pipe resulted in the ejected impact caused by the increased flow rate to become larger and the zone of jet influence to extend further.