• Title/Summary/Keyword: temperature rise

Search Result 1,956, Processing Time 0.024 seconds

The Temperature Distribution and Thermal Stress Analysis of Mold transformer (주상용 몰드변압기의 온도분포와 열응력 해석)

  • 조한구;이운용;한세원
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.387-390
    • /
    • 2000
  • The life of transformer is significantly dependent on the thermal behavior in windings. To analyse winding temperature rise, many transformer designer have calculated temperature distribution and hot spot point by finite element method(FEM). Recently, numerical analyses of transformer are studied for optimum design, that is electric field analysis, magnetic field, potential vibration, thermal distribution and thermal stress. Therefore design time and design cost are decreased by numerical analysis. In this paper, the temperature distribution and thermal stress analysis of 50kVA pole cast resin transformer for power distribution are investigated by FEM program. The temperature change according to load rates of transformer also have been investigated. We have carried out temperature rise test and test results are compared with simulation data.

  • PDF

Numerical Modeling for the Effect of High-rise Buildings on Meteorological Fields over the Coastal Area Using Urbanized MM5 (중/도시규모 기상모델을 이용한 고층건물군이 연안도시기상장에 미치는 영향 수치모델링)

  • Hwang, Mi-Kyoung;Oh, In-Bo;Kim, Yoo-Keun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.5
    • /
    • pp.495-505
    • /
    • 2012
  • Modeling the effects of high-rise buildings on thermo-dynamic conditions and meteorological fields over a coastal urban area was conducted using the modified meso-urban meteorological model (Urbanized MM5; uMM5) with the urban canopy parameterization (UCP) and the high-resolution inputs (urban morphology, land-use/land-cover sub-grid distribution, and high-quality digital elevation model data sets). Sensitivity simulations was performed during a typical sea-breeze episode (4~8 August 2006). Comparison between simulations with real urban morphology and changed urban morphology (i.e. high-rise buildings to low residential houses) showed that high-rise buildings could play an important role in urban heat island and land-sea breeze circulation. The major changes in urban meteorologic conditions are followings: significant increase in daytime temperature nearly by $1.0^{\circ}C$ due to sensible heat flux emitted from high density residential houses, decrease in nighttime temperature nearly by $1.0^{\circ}C$ because of the reduction in the storage heat flux emitted from high-rise buildings, and large increase in wind speed (maximum 2 m $s^{-1}$) during the daytime due to lessen drag-force or increased gradient temperature over coastal area.

Measurement of HTS Stacked Tapes Properties under Over-Current Condition in External Magnetic Field (외부자계 인가시 적층 고온초전도선재의 과전류 통전특성 측정)

  • Lee, K.Y.;Lim, H.W.;Lee, H.J.;Cha, G.S.;Lee, J.K.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.909-911
    • /
    • 2002
  • Rises of current level at power applications, such as transformer, motor, power cable need for using stacked HTS tapes. In this paper, we measured rises of temperature and tap voltage in 4-stacked HTS tapes under over-current condition. We measured 4-stacked HTS tapes properties under over-current condition with a little temperature rise as well as a large temperature rise. Rises of temperature and tap voltage are measured by using E-type thermocouples and voltage taps, respectively. According to the results of measurement, rises of tap voltage under over-current condition with a large temperature rises depends on rises of temperature.

  • PDF

Study on the Adiabatic Temperature Rise of High Strength Concrete with Design Compressive Strength and Mixing Temperature (타설온도 및 혼화재 치환에 따른 고강도콘크리트의 단열온도상승에 관한 연구)

  • Lee, Byoung-Chun;Kim, Gyu-Yong;Koo, Kyung-Mo;Nam, Jeong-Soo;Ham, Eun-Young;Lee, Bo-Kyeong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.101-102
    • /
    • 2012
  • In this study, it was evaluated about hydration heat reduction under hot weather condition. Placement temperature set 25℃ and 35℃, For hydration heat reduction was applied such as FA and BFS. As a results, mixture of BFS70% is the most effective hydration temperature reduction.

  • PDF

A Study for Estimation of the Surface Temperature Rise Using the FVM and Semi-Infinite Solid Analysis (FVM과 반무한체 해석을 이용한 표면온도예측에 관한 연구)

  • 이상돈;김태완;조용주
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.260-266
    • /
    • 2001
  • The surface temperature at the interface of bodies in a sliding contact is one of the most important factors influencing the behavior of machine components. So the calculation of the surface temperature at a sliding contact interface has long been an interesting and important subject for tribologist. Several methods for calculating surface temperature have been devised. Several numerical methods have been used to predict the temperature rise of sliding surface. but those need much time to calculate. In this study to reduce the calculation time the hybrid method using both semi-infinite solid analysis and FVM was used. It is founded that the computing time of hybrid method was shorter than that of FVM.

  • PDF

Temperature Characteristics of High Speed Angular Contact Ball Bearing (고속 앵귤러 컨택트 볼 베어링의 온도특성)

  • Hyeon, Jun-Su;Park, Tae-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.2
    • /
    • pp.96-101
    • /
    • 2001
  • This paper shows the temperature characteristics of a high speed angular contact ball gearing which is 7004C type with ISO P2 tolerance class. A built-in motor type high speed spindle which adopts an oil-air lubrication system was used to measure the temperature rise up to 60,000rpm. The gearing temperature was measured using thermocouples that were attached to the outside surfaces of the outer rings. The result showed that the continuous test method which was suggested in this paper is more effective than on and off method and the lubrication oil supply rate should be reduced in high speed rolling bearings as long as the seizure does not occur. And the result were confirmed that the bearings packed with ceramic balls are superior to those with steel balls in temperature characteristics.

  • PDF

The Optimal Design of Single Sided PMLSM for Considering Winding Temperature Rising according to Thickness of Teeth

  • An, Ho-Jin;Cho, Gyu-Won;Woo, Seok-Hyeon;Kim, Gyu-Tak
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.339-344
    • /
    • 2013
  • This research deals with design of the maximum thrust density with considering winding temperature rise of single-sided PMLSM. The temperature rise of winding which caused to machine characteristics such as copper loss, iron loss and efficiency was analyzed by FEM. The maximum allowable current density was calculated within the allowable temperature. The effects of loss and efficiency according to temperature characteristic were confirmed.

Relaxation of Singular Stress in Adhesively Bonded Joint at High Temperature

  • Lee, Sang Soon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.1
    • /
    • pp.35-39
    • /
    • 2018
  • This paper deals with the relaxation of singular stresses developed in an epoxy adhesive at high temperature. The interface stresses are analyzed using BEM. The adhesive employed in this study is an epoxy which can be cured at room temperature. The adhesive is assumed to be linearly viscoelastic. First, the distribution of the interface stresses developed in the adhesive layer under the uniform tensile stress has been calculated. The singular stress has been observed near the interface corner. Such singular stresses near the interface corner may cause epoxy layer separated from adherent. Second, the interfacial thermal stress has been investigated. The uniform temperature rise can relieve the stress level developed in the adhesive layer under the external loading, which can be viewed as an advantage of thermal loading. It is also obvious that temperature rise reduces the bonding strength of the adhesive layer. Experimental evaluation is required to assess a trade-off between the advantageous and deleterious effects of temperature.

The Influence of Specimen Volume on the Adiabatic Temperature Rise of Concrete (콘크리트 단열온도 상승량에 미치는 시험체 용적의 영향)

  • Bae, Jun-Young;Cho, Sung-Hyun;Shin, Kyung-Joon;Kim, Yun-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.659-666
    • /
    • 2012
  • To secure the thermal crack resistance of mass concrete, researches and the field applications of low heat portland cement (LPC), ternary blended cement (TBC) which is produced by blending ordinary portland cement with blast furnace slag and fly ash, and early strength low heat blended cement (EBC) increased in recent years. Although the model for adiabatic temperature rise is necessary for estimating the risk of thermal cracking of concrete structures, sufficient data have not been accumulated for these mixtures. In addition, the differences in adiabatic test results have been reported for the volume of test specimens. Therefore, the present study evaluated the characteristics of adiabatic temperature rise based on the type of binder and the volume of the adiabatic test specimen. Test results indicated that the maximum temperature rise ($Q_{\infty}$) and the reaction factor (r) of TBC were the lowest. Test results also showed that $Q_{\infty}$ and r changed with respect to the volume of test specimen. $Q_{\infty}$ and r obtained from 6l equipment were lower than those of 50l equipment. Therefore, corrections with respect to this phenomenon was confirmed and the corrections factors are presented.

The Effect of Changes in Polymerization Conditions of Orthodontic Acrylic Resin on Maximum Load (Orthodontic Acrylic Resin의 중합조건 변화가 최대하중에 미치는 영향)

  • Lee, Gyu Sun
    • Journal of Technologic Dentistry
    • /
    • v.35 no.2
    • /
    • pp.127-136
    • /
    • 2013
  • Purpose: In order to find out the impact of changes in polymerization conditions of orthodontic acrylic resin on maximum load. Methods: While maintaining mixing ratio 3:1 of polymer and monomer in spray-on way in the production condition of polymerization temperature $25^{\circ}C$ or $37^{\circ}C$ for 10 minutes or 30 minutes of polymerization time by pressure $3kfg/cm^2$ or $6kfg/cm^2$ in the lab maintaining $25^{\circ}C$ of room temperature, the change in maximum load rise rate was tested by producing 5 acrylic resin specimens for orthodontics per group to meet the standards of $25mm{\times}2mm{\times}2mm$ and using INSTRON with the 3rd bar 2mm in diameter and parallel support bending device of $15{\pm}0.1mm$ as test equipment showing 30.00mm/min of crosshead speed, $50{\pm}16$ N/min of load ratio in the laboratory of $24^{\circ}C$ room temperature and as a result, the following results were obtained. Results: 1. When increasing pressure from $3kfg/cm^2$ to $6kfg/cm^2$, maximum load was lowered by -4.285%. 2. When increasing polymerization time from 10 minutes to 30 minutes, maximum load rose by 3.848%. 3. When increasing polymerization temperature from $27^{\circ}C$ to $37^{\circ}C$, maximum load rose by 5.854%. Conclusion: Considering the above test results that polymerization time and polymerization temperature when polymerizing acrylic resin for orthodontics according to changes in working conditions had an impact on the rate of rise of maximum load values but the rate of rise was lowered when increasing pressure from $3kfg/cm^2$ to $6kfg/cm^2$, we came to a conclusion that high pressure more than necessary does not affect the rate of rise of maximum load.