• Title/Summary/Keyword: temperature properties

Search Result 18,767, Processing Time 0.043 seconds

Evaluation of Low Temperature Properties in 18Cr Ferritic Stainless Steel Welds (18Cr 페라이트계 스테인리스강의 용접부 저온 특성 평가)

  • Lee, Won-Bae;U, In-Su;Eom, Sang-Ho;Lee, Jong-Bong
    • Proceedings of the KWS Conference
    • /
    • 2007.11a
    • /
    • pp.138-140
    • /
    • 2007
  • This study aimed to evaluate the low temperature properties of the 18Cr ferritic stainless steel weld. Applied welding methods were LB(Laser Beam) and GTA(Gas Tungsten Arc) welding to compare the different low temperature properties of the welds. Low temperature properties were evaluated by the Charpy impact, Erichsen and Expansion test at low temperature. LB weld showed superior low temperature properties in the cases of the Charpy impact test and expansion test at low temperature, while GTA weld showed a superior low temperature property in the case of Erichsen test at low temperature. The different low temperature properties with test methods are still under analysis and may be due to different crack path depending on the microstructure, test speed and stress concentration during test.

  • PDF

Evaluation of early age mechanical properties of concrete in real structure

  • Wang, Jiachun;Yan, Peiyu
    • Computers and Concrete
    • /
    • v.12 no.1
    • /
    • pp.53-64
    • /
    • 2013
  • The curing temperature is known to influence the rate of mechanical properties development of early age concrete. In realistic sites the temperature of concrete is not isothermal $20^{\circ}C$, so the paper measured adiabatic temperature increases of four different concretes to understand heat emission during hydration at early age. The temperature-matching curing schedule in accordance with adiabatic temperature increase is adopted to simulate the situation in real massive concrete. The specimens under temperature-matching curing are subjected to realistic temperature for first few days as well as adiabatic condition. The mechanical properties including compressive strength, splitting strength and modulus of elasticity of concretes cured under both temperature-matching curing and isothermal $20^{\circ}C$ curing are investigated. The results denote that comparing temperature-matching curing with isothermal $20^{\circ}C$ curing, the early age concretes mechanical properties are obviously improved, but the later mechanical properties of concretes with pure Portland and containing silica fume are decreased a little and still increased for concretes containing fly ash and slag. On this basement using an equivalent age approach evaluates mechanical properties of early age concrete in real structures, the model parameters are defined by the compressive strength test, and can predict the compressive strength, splitting strength and elasticity modulus through measuring or calculating by finite element method the concreted temperature at early age, and the method is valid, which is applied in a concrete wall for evaluation of crack risking.

Temperature, Electric Field, Pressure Dependency and Dielectric properties on the interface between XLPE and EPDM (XLPE와 EPDM의 계면에 따른 유전특성과 온도, 전계, 압력의존성)

  • 김동식;박대희
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.109-111
    • /
    • 1997
  • In this paper, we have evaluated temperature, electric field, Pressure dependency and dielectric properties of EPDM XLPE and EPDM/XLPE\`s interface. Temperature dependency of EPDM had great influence with dielectric properties, but pressure and applied voltage of EPDM had no effect on dielectric properties. Dielectric properties of XLPE were influenced by not only temperature but also pressure and applied voltage. We knowed that dielectric properties of EPDM/XLPE were trended toward tendency of those of EPDM

  • PDF

Sliding We3f Properties for 5%Co-5%V-1%Nb High Speed Steel by Powder Metallurgy at High Temperature (5%Co-5%V-1%Nb 분말고속도공구강의 고온 미끄럼마모특성)

  • 이한영;김용진;배종수
    • Tribology and Lubricants
    • /
    • v.19 no.3
    • /
    • pp.151-158
    • /
    • 2003
  • In metal cutting at the tool-chip interface, friction generates considerable amount of heat. Thus, the knowledge of wear properties of cutting tool material in high temperature has been as one of important factors in need of clarification. The authors presented the wear properties of 5%Co-5%V-1%Nb high speed steel, fabricated by powder metallurgy, in room temperature in previous articles. The objective of this paper is to clarify the effects of temperature on its wear properties. Wear tests in sliding conditions under various temperatures have been conducted using the pin-on-disc type wear test machine. The results indicate that the wear properties of 5%Co-5%V-1%Nb high speed steel in high temperature as well as in room temperature are excellent. It may be deduced that the oxide layer formed on worn surface at high temperature is stable enough to prevent wear due to the high temperature strength of its matrix.

The Prediction and Control of Plate Mechanical Properties By the Analysis of Temperature History on ROT in Hot Strip Mill (열연 권취중 냉각이력 해석을 통한 재질예측 및 제어기술 개발)

  • Lee, J.H.;Kim, H.J.;Kim, Jae-Bu;Im, Y.R.;Lee, J.K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.111-113
    • /
    • 2007
  • The Mechanical properties of steel in hot strip mill were associated with the alloy composition, plastic deformation, cooling history and so on. In the case of the same alloy composition and deformation conditions, cooling history on ROT (run out table) is the main factor in affecting mechanical properties of steel, especially, in carbon steel. On ROT, the steel undergoes under various kinds of cooling conditions such as radiation, convection by air, water and wetting zone. The coiling temperature (CT) of the steel is also important factor in affecting mechanical properties. But with the same CT, the mechanical properties of steel can be different because the temperature history of cooling is more important factor than CT itself. In this study, we have studied the relations between temperature history and mechanical properties of steel and then the predicted mechanical properties have compared with the measured values.

  • PDF

High Temperature Tensile Properties of Heat-resistant Cast Ferritic Stainless Steels (고내열 페라이트계 스테인레스 주강의 고온인장특성 평가)

  • Jeong, Hyeon Kyeong;Lee, Dong-Geun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.1
    • /
    • pp.10-16
    • /
    • 2021
  • Exhaust manifold is a very important component that is directly connected to air environment pollution and that requires strict mechanical properties such as high temperature fatigue and oxidation. Among stainless steels, the ferritic stainless steel with body-centered cubic structure shows excellent resistance of stress-corrosion cracking, ferromagnetic at room temperature, very excellent cold workability and may not be enhanced by heat treatment. The microstructural characteristics of four cast ferritic stainless steels which are high heat-resistant materials, were analyzed. By comparing and evaluating the mechanical properties at room temperature and high temperature in a range of 400℃~800℃, a database was established to control and predict the required properties and the mechanical properties of the final product. The precipitates of cast ferritic stainless steels were analyzed and the high-temperature deformation characteristics were evaluated by comparative analysis of hardness and tensile characteristics of four steels at room temperature and from 400℃ to 800℃.

Thermal Properties and Spray Characteristics of Kerosene Fuel at High Temperature and Pressure (고온고압 환경에서 케로신 연료의 물성치변화 및 분무특성연구)

  • Byeon, Yong-Woo;Son, Min;Koo, Ja-Ye
    • Journal of ILASS-Korea
    • /
    • v.15 no.2
    • /
    • pp.94-99
    • /
    • 2010
  • The object of this investigation is to study the thermal properties and spray characteristics of kerosene fuel in high temperature and pressure conditions. In order to investigate the thermal properties and spray characteristics, KIVA3 and SUPERTRAPP have been used at the same time. The thermal properties of kerosene has been calculated in high temperature and pressure condition using SUPERTRAPP. The study of spray characteristics has been conducted at both original properties of KIVA3 and calculated properties. The evaporation rate was increased in proportion to pressure when the calculated properties were used. However, the effect of pressure was not shown in the case of using original properties. So the calculated properties are more effective than original properties in high temperature and high pressure condition.

Effects of Process Temperature on the Tribological Properties of Tetrahedral Amorphous Carbon (ta-C) Coating (공정 온도에 따른 사면체 비정질 카본 (ta-C) 코팅의 트라이볼로지적 특성연구)

  • Kang, Yong-Jin;Kim, Do Hyun;Ryu, Hojun;Kim, Jongkuk;Jang, Young-Jun
    • Tribology and Lubricants
    • /
    • v.35 no.6
    • /
    • pp.362-368
    • /
    • 2019
  • In this study, mechanical and tribological properties were investigated by varying the process temperature (50, 100, 125 and 150℃) to reduce internal stress. The internal stress reduction by thermal dissociation ta-C coating film with increasing temperature is confirmed through the curvature radius of the ta-C coating according to the temperature of the SUS plate. As the coating temperature increased, the mechanical properties (hardness, modulus, toughness) deteriorated, which is in agreement with the Raman analysis results. As the temperature increased, the sp2 phase ratio increased owing to the dissociation of the sp3 phase. The friction and wear properties are related to the process temperature during ta-C coating. Low friction and wear properties are observed in high hardness samples manufactured at 50℃, and wear resistance properties decreased with increasing temperature. The contact area is expected to increase owing to the decrease of hardness(72 GPa to 39 GPa) and fracture toughness with increasing temperature which accelerated wear because of the debris generated. It was confirmed that at process temperature of over than 100℃, the bond structure of the carbon film changed, and the effect of excellent internal stress was reduced. However, the wear resistance simultaneously decreased owing to the reduction in fracture toughness. Therefore, in order to increase industrial utilization, optimum temperature conditions that reduce internal stress and retain mechanical properties.

Post-buckling analysis of Timoshenko beams with temperature-dependent physical properties under uniform thermal loading

  • Akbas, Seref Doguscan;Kocaturk, Turgut
    • Structural Engineering and Mechanics
    • /
    • v.44 no.1
    • /
    • pp.109-125
    • /
    • 2012
  • Post-buckling behavior of Timoshenko beams subjected to uniform temperature rising with temperature dependent physical properties are studied in this paper by using the total Lagrangian Timoshenko beam element approximation. The beam is clamped at both ends. In the case of beams with immovable ends, temperature rise causes compressible forces end therefore buckling and post-buckling phenomena occurs. It is known that post-buckling problems are geometrically nonlinear problems. Also, the material properties (Young's modulus, coefficient of thermal expansion, yield stress) are temperature dependent: That is the coefficients of the governing equations are not constant in this study. This situation suggests the physical nonlinearity of the problem. Hence, the considered problem is both geometrically and physically nonlinear. The considered highly non-linear problem is solved considering full geometric non-linearity by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. The beams considered in numerical examples are made of Austenitic Stainless Steel (316). The convergence studies are made. In this study, the difference between temperature dependent and independent physical properties are investigated in detail in post-buckling case. The relationships between deflections, thermal post-buckling configuration, critical buckling temperature, maximum stresses of the beams and temperature rising are illustrated in detail in post-buckling case.

Effects of temperature dependent material properties on mixed mode crack tip parameters of functionally graded materials

  • Rajabi, Mohammad;Soltani, Nasser;Eshraghi, Iman
    • Structural Engineering and Mechanics
    • /
    • v.58 no.2
    • /
    • pp.217-230
    • /
    • 2016
  • Effects of temperature dependent material properties on mixed mode fracture parameters of functionally graded materials subjected to thermal loading are investigated. A domain form of the $J_k$-integral method including temperature-dependent material properties and its numerical implementation using finite element analysis is presented. Temperature and displacement fields are calculated using finite element analysis and are used to compute mixed mode stress intensity factors using the $J_k$-integral. Numerical results indicate that temperature-dependency of material properties has considerable effect on the mixed-mode stress intensity factors of cracked functionally graded structures.