• Title/Summary/Keyword: temperature of dew point

Search Result 133, Processing Time 0.025 seconds

Meteorological Data Integrity for Environmental Impact Assessment in Yongdam Catchment (용담댐시험유역 환경영향평가의 신뢰수준 향상을 위한 기상자료의 품질검정)

  • Lee, Khil-Ha
    • Journal of Environmental Science International
    • /
    • v.29 no.10
    • /
    • pp.981-988
    • /
    • 2020
  • This study presents meteorological data integrity to improve environmental quality assessment in Yongdam catchment. The study examines both extreme ranges of meteorological data measurements and data reliability which include maximum and minimum temperature, relative humidity, dew point temperature, radiation, heat flux. There were some outliers and missing data from the measurements. In addition, the latent heat flux and sensible heat flux data were not reasonable and evapotranspiration data did not match at some points. The accuracy and consistency of data stored in a database for the study were secured from the data integrity. Users need to take caution when using meteorological data from the Yongdam catchment in the preparation of water resources planning, environmental impact assessment, and natural hazards analysis.

Humidification Characterization of water-to-gas Membrane Humidifier for Polymer Electrolyte Membrane Fuel Cell (고분자 전해질 연료전지용 water-to-gas 막 가습기의 투과 특성)

  • Chang, Dae-Kwon;Lee, Yong-Taek
    • Membrane Journal
    • /
    • v.20 no.4
    • /
    • pp.326-334
    • /
    • 2010
  • In this study, characterization and performance of membrane humidifier using membrane distillation was evaluated for moisture of fuel gas in the PEMFC. The data were expressed dew point. The best results show $51.19^{\circ}C$ at $60^{\circ}C$ of water temperature, $54.22^{\circ}C$ at 900 mL/min and $60.03^{\circ}C$ at 100 strands. The mass transfer modelling of membrane humidifier were able to predict humidification of fuel gases for operating PEMFC. When the membrane humidifier was applied to the 100 W stack, it showed stable voltage and power. The volume of membrane humidifier was small however, showed better performance than bubble humidifier.

Measurement and Modeling of Bubble Points for Binary Mixtures of Carbon Dioxide and N,N-Dimethylformamide (이산화탄소와 디메틸포름아마이드 혼합물의 기포점 측정 및 모델링)

  • Jung, Joon-Young;Lee, Byung-Chul
    • Clean Technology
    • /
    • v.17 no.1
    • /
    • pp.19-24
    • /
    • 2011
  • The bubble point pressures of binary mixtures of carbon dioxide ($CO_2$) and N,N-dimethylformamide (DMF) were measured by using a high-pressure experimental apparatus equipped with a variable-volume view cell, at various $CO_2$ compositions in the range of temperatures above the critical temperature of $CO_2$ and below the critical temperature of DMF. The experimental bubble point pressure data were correlated with the Peng-Robinson equation of state (PR-EOS) to estimate the corresponding dew point compositions at equilibrium with the bubble point compositions. The experimentally measured bubble point pressures gave good agreement with those calculated by the PR-EOS. The variable-volume view cell equipment was verified to be an easy and quick way to measure the bubble point pressures of high-pressure compressible fluid mixtures.

Measurement of Bubble Points of Dimethyl Carbonate and Carbon Dioxide Mixtures (디메틸카보네이트와 이산화탄소 혼합물의 기포점 측정)

  • Ahn, Joon-Yong;Lee, Byung-Chul
    • Applied Chemistry for Engineering
    • /
    • v.20 no.1
    • /
    • pp.94-98
    • /
    • 2009
  • The bubble point pressures of dimethyl carbonate and carbon dioxide mixtures were measured by using a high-pressure experimental apparatus equipped with a variable-volume view cell, at various $CO_2$ compositions in the range of temperatures above the critical temperature of $CO_2$ and below the critical temperature of dimethyl carbonate. The experimental bubble point pressure data were correlated with the Peng-Robinson equation of state (PR-EOS) to estimate the corresponding dew point compositions at equilibrium with the bubble point compositions. The experimentally measured bubble point pressures gave good agreement with those calculated by the PR-EOS. The variable-volume view cell equipment was verified to be an easy and quick way to measure the bubble point pressures of high-pressure compressible fluid mixtures.

A Study of Anti-Condensation on the Surface for Aluminum Butterfly Valves (알루미늄 버터플라이밸브의 표면 결로방지에 관한 연구)

  • Kwak, Kyung-Min;Lee, Joong-Hyoung;Cho, Kyung-Chul;Lee, Eun-Ha
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.4
    • /
    • pp.73-79
    • /
    • 2021
  • The objective of this study is to prevent or decrease condensation on the surface of aluminum butterfly valves used in high humidity air conditions. We proposed a new valve with an anti-condensation device, a heat resistance medium, instead of a conventional valve. We, then, compared the surface temperature distribution between the proposed and conventional valves using experimental and analytical methods. The size of the evaluated valve is 100A and fluid conditions are 35℃/RH 75% in the air outside the valve and 5℃ in the cooling water inside the valve. The experimental results show that the surface temperature of the proposed valve is 23~42% higher than that of a conventional valve, thereby exhibiting an anti-condensation effect. As a result, we observed the complete prevention of condensation on a gear box mounted to the proposed valve, showing surface temperature distribution above the dew point temperature of air. The analytical results are in agreement with the trends in experimental results.

A Study on the Gust with Thunderstorm in Honam Area (호남지역에서 뇌우에 의한 돌풍사례 분석)

  • Cho, Eun-Hee
    • Journal of Integrative Natural Science
    • /
    • v.2 no.2
    • /
    • pp.101-130
    • /
    • 2009
  • In recent years, South Korea has often witnessed damages by gusts caused by thunderstorms in summer. The Korea Meteorological Administration defines that a gust happens when the maximum instantaneous wind velocity is 10m/s or more and draws up hourly observation reports. When a cumulonimbus develops due to an ascending current and reaches the height of 12~16 km, the temperature of the cloud top drops and a lightening happens, which causes a gust accompanied by a thunderstorm and further regional meteorological damage. It's difficult to predict a regional gust with the mesoscale prediction model at the administration. Thus this study set out to analyze the damage cases by a gust accompanied by a thunderstorm and to make a contribution to the prediction and understanding of a gust by a thunderstorm. A gust by a thunderstorm happens where potential equivalent temperature converges or is higher than the surrounding areas. The convergence area of potential equivalent temperature matches the track of thunderstorm cells. The Kimje gust took place where high potential equivalent temperature converged, and the Jangsu gust did as the area of high potential equivalent temperature approached. There should be a good amount of vapor supply with the moisture flux converging at the bottom layer in order to bring instability. In addition, it should collide into a dry and cold atmosphere at 700 hPa. The moving track at the center of the low dew point spread corresponds to that of a gust.

  • PDF

Characteristics of Black Ice Using Thermal Imaging Camera (열화상카메라를 이용한 블랙아이스 특성 연구)

  • Kim, Seung-Jun;Yoon, Won-Sub;Kim, Yeon-Kyu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.6_2
    • /
    • pp.873-882
    • /
    • 2021
  • In this study, a study was conducted to develop a system for predicting/responding to black ice occurring on roads in winter. Tests conditions were studied by making models of cement concrete pavement and asphalt concrete pavement. In order to freeze water on the manufactured model package, an tests was conducted at a temperature below zero using a freezer, and the freezing process was photographed using a thermal imaging camera. Black ice is generated when water is present on the road surface and the temperature is below freezing or the road surface temperature is below the dew point temperature. Under sub-zero conditions, the pavement, water, and ice were classified with a thermal imaging camera. As a result of the tests, it was possible to distinguish with a thermal imaging camera at a temperature below freezing in the same freezer due to the difference in the emissivity of the packaging, water, and ice. In the process of changing from water to ice during the tests, it was analyzed that ice and water were clearly distinguished by the thermal imaging camera due to the difference in emissivity and reflectance, so black ice could be predicted using the thermal imaging camera.

An Experimental and Simulation Analysis of Condensation in the Walk-in Closet Attached to Apartment Bathroom (욕실과 인접한 아파트 드레스룸의 결로 원인 분석)

  • Choi, Young-Woo;Kim, Sean Hay
    • KIEAE Journal
    • /
    • v.17 no.4
    • /
    • pp.89-94
    • /
    • 2017
  • Purpose: Condensation in walk-in closets attached to apartment bathroom has been known as an emerging issue that may threat occupants' comfort and health. Despite a number of design guidelines and enforcements to prevent condensation, condensation issues may still occur depending on various cases and scenarios. We aim to identify what condensation scenarios may lead to walk-in closet condensation and/or worse the existing condensation issues. Method: First we choose an actual walk-in closet of an apartment that suffers from sporadic condensation and resulting mold and mildew. Then we observe its relative humidity and temperature after the bathroom is used, in which excessive vapor is thought to be transported to the walk-in closet. We analyze Temperature Difference Ratio - a domestic indicator of condensation occurrence, and dew point temperature to compare it with surface temperature using 2D heat transfer simulation upon various condensation scenarios. Result: TDR of the test walk-in closet turns out be OK despite mold and mildew actually occurring. Hot water pipe installed in the floor would greatly reduce condensation. If hot water pipe in the upper floor, however, is not used, or hot water pipe of the closet is turned off during swing seasons, it is expected that condensations may still occur.

DRYING CHARACTERISTINCS OF THIN-LAYERS OF WHEAT AND BARLEY AT NEAR-AMBIENT TEMPERATURE

  • Sun, Da-Wen;J.J.Woods
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.896-905
    • /
    • 1993
  • Thin-layers of wheat and barley are dried at near-ambient temperatures(3.5$^{\circ}C$ -5$0^{\circ}C$) in order to obtain the intrinsic drying data. The well established apparatus was modified to enable it to record all the sample weight data in still air by using a purpose -built automatically controlled sliding valve. The air could be diverted in less than 0.5seconds and a 7 second period was required to attain a steady weight reading. With this apparatus, very smooth drying curves were obtained. The data of sample weight , drying temperature and dew point temperature wee recorded continuously . The drying process was terminated when the moisture content change in 24 hours was less than 0.004 d.b. This was achieved by drying a sample for about a week . The final points were recorded as the dynamic equilibrium moisture content(EMC). The drying data were than fitted to the exponential Newton model and the dynamic EMC data were fitted to the Modified-Chung-Pfost Model . All the fitted parameters are given and comparison is made with previous published data. The comparisons who that the current drying constants are lower than the previous data, the dynamic EMC data obtained for wheat and barely agree with the previous data. The results show that to obtain the drying constant in the exponential Newton model, adequate drying time is necessary.

  • PDF

Analysis of Time Series Models for Ozone Concentration at Anyang City of Gyeonggi-Do in Korea (경기도 안양시 오존농도의 시계열모형 연구)

  • Lee, Hoon-Ja
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.5
    • /
    • pp.604-612
    • /
    • 2008
  • The ozone concentration is one of the important environmental issue for measurement of the atmospheric condition of the country. This study focuses on applying the Autoregressive Error (ARE) model for analyzing the ozone data at middle part of the Gyeonggi-Do, Anyang monitoring site in Korea. In the ARE model, eight meteorological variables and four pollution variables are used as the explanatory variables. The eight meteorological variables are daily maximum temperature, wind speed, amount of cloud, global radiation, relative humidity, rainfall, dew point temperature, and water vapor pressure. The four air pollution variables are sulfur dioxide $(SO_2)$, nitrogen dioxide $(NO_2)$, carbon monoxide (CO), and particulate matter 10 (PM10). The result shows that ARE models both overall and monthly data are suited for describing the oBone concentration. In the ARE model for overall ozone data, ozone concentration can be explained about 71% to by the PM10, global radiation and wind speed. Also the four types of ARE models for high level of ozone data (over 80 ppb) have been analyzed. In the best ARE model for high level of ozone data, ozone can be explained about 96% by the PM10, daliy maximum temperature, and cloud amount.