• 제목/요약/키워드: temperature of degradation

검색결과 2,173건 처리시간 0.033초

전기화학적 양극분극시험에 의한 고온 설비부재의 열화손상 평가 (Degradation Damage Evaluation of High Temperature Structural Components by Electrochemical Anodic Polarization Test)

  • 유호선;송문상;송기욱;류대영
    • 대한기계학회논문집A
    • /
    • 제24권6호
    • /
    • pp.1398-1407
    • /
    • 2000
  • The structural steels of power plant show the decrease of mechanical properties due to degradation such as temper embrittlement, creep damage and softening during long-term operation at high temper ature. The typical causes of material degradation damage are the creation and coarsening of carbides(M23C6, M6C) and the segregation of impurities(P, Sb and Sn) to grain boundary. It is also well known that material degradation induces the cleavage fracture and increases the ductile-brittle transition temperature of steels. So, it is very important to evaluate degradation damage to secure the reliable and efficient service condition and to prevent brittle failure in service. However, it would not be appropriate to sample a large test piece from in-service components. Therefore, it is necessary to develop a couple of new approaches to the non-destructive estimation technique which may be applicable to assessing the material degradation of the components with not to influence their essential strength. The purpose of this study is to propose and establish a new electrochemical technique for non-destructive evaluation of material degradation damage for Cr-Mo steels which is widely used in the high temperature structural components. And the electrochemical anodic polarization test results are compared with those of semi-nondestructive SP test.

온도와 pH에 따른 MSG 열분해의 속도론적 연구 (Thermal Degradation Kinetics of Monosodium Glutamate as Affected by Temperature and pH)

  • 차보숙;한민수;김우정
    • 한국식품과학회지
    • /
    • 제23권3호
    • /
    • pp.355-359
    • /
    • 1991
  • 글루타민산 나트륨(MSG)의 열안정성을 조사하기 위하여 가열온도 및 pH를 변화시키면서 가열 중 MSG의 분해정도를 비교하였다. 가열온도와 pH의 범위는 각각 $100{\sim}120^{\circ},\;4{\sim}9C$로 하였고, MSG는 2% 용액으로 만들었으며 가열 중 잔류 MSG 농도를 HPLC로 측정하였다. 그 결과 pH 4와 $120^{\circ}C$의 3시간 가열로 약 73% MSG가 감소한 반면, $100^{\circ}C$에서의 3시간 가열은 12% 정도만이 감소함을 보였다. 가열온도와 pH에 따른 초기 MSG의 분해속도와 분해 속도상수{(%MSG/log(hrs)}를 비교한 결과 $110^{\circ}C$$120^{\circ}C$에서의 초기 분해속도는 pH 4가 가장 빨랐으며 분해 속도상수도 상당히 높은 값을 보였다. 분해가 가장 적었던 pH 범위는 $pH6{\sim}8$ 범위였다. 또한 가열온도에 영향을 가장 많이 받았던 pH 4와 pH 5의 MSG 열분해 속도상수와 1/T의 관계에서 계산된 활성화에너지는 각각 18.3 kcal/mole과 9.2 kcal/mole이었다.

  • PDF

빛이 홍화씨기름 산화 및 토코페롤 분해의 온도의존성에 미치는 영향 (Effects of Light on Temperature Dependence of Safflower Oil Oxidation and Tocopherol Degradation)

  • 왕선영;최은옥
    • 한국식품과학회지
    • /
    • 제44권3호
    • /
    • pp.287-292
    • /
    • 2012
  • 홍화씨기름의 과산화물값과 공액이중산값은 빛의 존재와 상관없이 산화시간과 산화온도가 증가함에 따라 증가했으나, 동일한 온도에서는 빛의 존재 하에서 높은 과산화물값과 공액이중산값을 보여 빛은 홍화씨기름의 산화를 촉진시켰다. 빛은 홍화씨기름 산화 및 토코페롤 분해 속도의 온도의존성을 감소시켰으며, 따라서 산화온도는 광산화에서보다는 자동산화에서 더욱 중요한 인자로 작용했다.

$^{60}Co\;{\gamma}$-선 조사에 따른 클로프렌 고무의 열적 특성 (Thermal Properties of Chloroprene Rubber with $^{60}Co\;{\gamma}$-ray Irradiation)

  • 김기엽;이청;류부형
    • 한국안전학회지
    • /
    • 제18권4호
    • /
    • pp.64-70
    • /
    • 2003
  • The thermal properties of chloroprene rubber (CR) with $^{60}Co\;{\gamma}$-ray irradiation has been investigated. The prepared CR was irradiated up to 1000kGy radiation dose by $^{60}Co\;{\gamma}$-ray and the radiation degradation of CR was investigated by thermogravimetric analysis and differential acanning calorimetry. Dynamic mechanical properties measurement and FT-IR observation are carried out as well. From these analyses results, the glass transition temperature($T_g$), decomposition onset temperature(DOT), oxidative induction time(OIT), the peak temperature of loss modulus and mechanical tan ${\delta}$ values were compared for the radiation degradation level of CR. The tendency between $T_g$ and peak temperature of loss modulus and mechanical tan ${\delta}$ agreed well with radiation doses. Decomposition temperature, OIT and DOT showed the same tendencies as increasing radiation doses. It was verified that these analyses are available to estimate the degradation level of CR.

고온에서 PD-SOI PMOSFET의 소자열화 (Hot carrier induced device degradation for PD-SOI PMOSFET at elevated temperature)

  • 박원섭;박장우;윤세레나;김정규;박종태
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 II
    • /
    • pp.719-722
    • /
    • 2003
  • This work investigates the device degradation p-channel PD SOI devices at various applied voltages as well as stress temperatures with respect to Body-Contact SOI (BC-SOI) and Floating-Body SOI (FB-SOI) MOSFETs. It is observed that the drain current degradation at the gate voltage of the maximum gate current is more significant in FB-SOI devices than in BC-SOI devices. For a stress at the gate voltage of the maximum gate current and elevated temperature, it is worth noting that the $V_{PT}$ Will be decreased by the amount of the HEIP plus the temperature effects. For a stress at $V_{GS}$ = $V_{DS}$ . the drain current decreases moderately with stress time at room temperature but it decreases significantly at the elevated temperature due to the negative bias temperature instability.

  • PDF

Evaluation of Fracture Strength and Material Degradation for Weldment of High Temperature Service Steel Using Advanced Small Punch Test

  • Lee, Dong-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • 제18권9호
    • /
    • pp.1604-1613
    • /
    • 2004
  • This paper presents an effective and reliable evaluation method for fracture strength and material degradation of the micro-structure of high temperature service steel weldment using advanced small punch (ASP) test developed from conventional small punch (CSP) test. For the purpose of the ASP test, a lower die with a minimized ${\Phi}$1.5 mm diameter loading ball and an optimized deformation guide hole of ${\Phi}$3 mm diameter were designed. The behaviors of fracture energy (E$\_$sp/), ductile-brittle transition temperature (DBTT) and material degradation from the ASP test showed a definite dependency on the micro-structure of weldment. Results obtained from ASP test were compared and reviewed with results from CSP test, Charpy impact test, and hardness test. The utility and reliability of the proposed ASP test were verified by investigating fracture strength, behavior of DBTT, and fracture location of each micro-structure of steel weldment for test specimen in ASP test. It was observed that the fracture toughness in the micro-structure of FL+CGHAZ and ICHAZ decreased remarkably with increasing aging time. From studies of all micro-structures, it was observed that FGHAZ microstructure has the most excellent fracture toughness, and it showed absence of material degradation.

흡수 조건 및 부식 생성물에 의한 MEA 수용액의 변성 특성 (Degradation Characteristics of Aqueous MEA Solution by Corrosion Products and Absorption Conditions)

  • 남성찬;송윤아;백일현;윤여일;유정균;이창하
    • 한국수소및신에너지학회논문집
    • /
    • 제27권3호
    • /
    • pp.290-297
    • /
    • 2016
  • The absorbent loss due to degradation in $CO_2$ capture process using aqueous alkanol amine solution has adverse effect on the economics of overall process. The degradation causes absorbent loss, equipment corrosion, foaming, adhesive material producing and viscosity increase in operation. In this study, the degradation characteristics of $CO_2$ capture process using MEA (monoehtanolamine) under various conditions such as $O_2$ partial pressure, $CO_2$ loading and absorbent temperature. The effects of iron, which generated from the equipment corrosion, on absorbent degradation were studied using $Fe_2SO_4$ containing MEA solution. The produced gases were analyzed by FT-IR(Fourier Transform Infrared Spectrophotometer) and the specifically measured $NH_3$ concentration was used as a degradation degree of aqueous MEA solution. The experiments showed that the higher $CO_2$ loadings (${\alpha}$), $O_2$ fraction ($y_{O2}$) and reaction temperature enhanced the more degradation of aqueous MEA solution. Comparing other operation parameters, the reaction temperature most affected on the degradation. Therefore, it could be concluded that the above parameters affects on degradation should be considered for the selections of $CO_2$ absorbent and operating conditions.

미생물을 이용한 미역폐기물의 저장 및 알긴산염 저분자화 (Storage of Waste-Brown Seaweed and Degradation of Alginate Using Microorganism)

  • 안상준;김영숙;박권필
    • 한국환경과학회지
    • /
    • 제13권3호
    • /
    • pp.313-318
    • /
    • 2004
  • We studied a storage of waste-brown seaweed at room temperature and degradation of alginate in seaweed by microorganism DS-02. The seaweeds, mixed with 5.0 wt% DS-02 and sealed in vinyl package without any other treatment, could be stored longer than 1 year without spoilage at room temperature. During the storage process, the alginate of seaweed was decomposed by enzyme of DS-02 and the molecular weight of alginate decreased to about 1/10 of initial quantity. DS-02 growed as fast as it had maximum weight after 24 hour culture and it's enzyme had a maximum activity of alginate degradation at $40^{\circ}C.$ The seaweed sample became particles in DS-02 culture solution and the M. W of alginate decreased to about 1/10 of initial value after 24 hour decomposition. The effect of alginate degradation with DS-02 was similar to that of degradation with 3.0 M HCI solution for 24 hour.

Effects of Water Vapor, Molecular Oxygen and Temperature on the Photocatalytic Degradation of Gas-Phase VOCs using $TiO_2$Photocatalyst: TCE and Acetone

  • Kim, Sang-Bum;Jo, Young-Min;Cha, Wang-Seong
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제17권E2호
    • /
    • pp.35-42
    • /
    • 2001
  • Recent development of photocatalytic degradation method that is mediated by TiO$_2$ is of interest in the treatment of volatile organic compounds(VOCs). In this study, trichloroethylene(TCE) and acetone were closely examined in a batch scale of photo-reactor as a function of water vapor, oxygen, and temperature. Water vapor inhibited the photocatalytic degradation of acetone, while there was an optimum concentration in TCE. A lower efficiency was found in nitrogen atmosphere than air, and the effect of oxygen on photocatalytic degradation of acetone was greater than on that of TCE. The optimum reaction temperature on photocatalytic degradation was about 45$^{\circ}C$ for both compounds. NO organic byproducts were detected for both compounds under the present experimental conditions. It was ascertained that the photocatalytic reaction in a batch scale of photo-reactor was very effective in removing VOCs such as TCE and acetone in the gaseous phase.

  • PDF

Ti-Ni 형상기억합금의 열피로열화 거동 (Thermal Fatigue Degradation Behavior of Ni-Ti Shape Memory Alloy)

  • 박영철;조용배;오세욱
    • 대한기계학회논문집
    • /
    • 제18권11호
    • /
    • pp.2913-2921
    • /
    • 1994
  • In SMA(shape memory alloy), the degradation by fatigue is one of the most important problems to be overcome, when SMA is used for robot-actuator material. The actuator is operated repeatitively for long time and its repeating operation develops the fatigue degradation of SMA. The fatigue degradation changes the transformation temperature and deformation behavior and results in inaccurate operation control of robot. Accordingly, the changing behavior of transformation temperature and deformation which results from repeating operation is to be investigated in advance and the scheme to resolve those problems have to be made for the design of actuator. In this study, the fatigue tests were carried out on SMA specimens prepared to have different condition of aging time and pre-strain with the direct-current heating-cooling method, which was a general method of operation in robot actuators. The behavior of transformation temperature and deformation were examined and analyzed in each specimen and the study was performed to establish the optimistic manufacturing condition of SMA against the fatigue degradation.