• Title/Summary/Keyword: temperature limit

Search Result 1,360, Processing Time 0.027 seconds

Behavior of the Residual Stress on the Surfaces of 12Cr Steels Generated by Flame Hardening Process (화염경화 표면처리 공정에 의한 12Cr 강의 잔류응력 거동)

  • 이민구;김광호;김경호;김흥회
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.4
    • /
    • pp.226-233
    • /
    • 2004
  • The residual stresses on the surfaces of low carbon 12Cr steels used as a nuclear steam turbine blade material have been studied by controlling the flame hardening surface treatments. The temperature cycles on the surfaces of 12Cr steel were controlled precisely as a function of both the surface temperature and cooling rate. The final residual stress state generated by flame hardening was dominated by two opposite competitive contributions; one is tensile stress due to phase transformation and the other is compressive stress due to thermal contraction on cooling. The optimum processing temperatures required for the desirable residual stress and hardness were in the range of $850^{\circ}C$ to $960^{\circ}C$ on the basis of the specification of GE power engineering. It was also observed that the high residual tensile stress generated by flame hardening induced the cracks on the surfaces, especially across the prior austenite grain boundaries, and the material failure virtually, which might limit practical use of the surface engineered parts by flame hardening.

Effect of Operational Parameters on the Removal of Microcystis aeruginosa in Electro-flotation Process

  • Lucero, Arpon Jr;Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.25 no.10
    • /
    • pp.1417-1426
    • /
    • 2016
  • Despite the low removal efficiencies reported by previous studies, electro-flotation still stands out among other microalgae removal methods for its economical and environmental benefits. To enhance removal efficiency, the important factors that limit the performance of this method must be investigated. In this study, the possible ways of increasing the removal efficiency of microalgae have been explored by investigating the effects of several important variables in electro-flotation. Eight parameters, namely flotation time, rising time, current density, pH, conductivity, electrode distance, temperature and initial concentration were evaluated using a one-parameter-at-a-time approach. Results revealed that the operational parameters that greatly affected the removal efficiency of microalgae were electro-flotation time, current density, pH, and initial concentration. The effect of conductivity, electrode distance, and temperature on removal efficiency were insignificant. However, they exhibited positive an indirect positive effect on power demand, which is nowadays considered an equally important aspect in the running of a feasible and economically efficient electro-flotation process.

Sono-electrochemical Determination of Uric Acid (요산의 초음파 전기화학적 정량)

  • Cho Hyung-hwa;Bae Zun-ung
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.4
    • /
    • pp.232-234
    • /
    • 2000
  • Determination of uric acid by electrochemical method using ultrasonic stimulation has been investigated. Effects of sonication power, sonication time, pH of the solution and temperature were studied to obtain the optimal analytical conditions. The stability of the electrode was also examined. The optimal conditions for the sonovoltammetric determination of uric acid were as follows: temperature, $25.0^{\circ}C$ pH 7.0; sonication power, $20W/cm^2$. The calibration curve for the determination of uric acid by sono-LSV was linear over the range of$8.0{\times}10^{-6}\~5.0\times10^{-4}M$ and the limit of detection was $6.5\times10^{-6}M$.

Experimental Study on the Radiation Efficiency and Combustion Characteristics with Respective to the Mat Thickness and the Fuel Kinds in Metal-Fiber Burner (메탈화이버 버너에서 매트 두께와 연료 종류에 따른 복사 효율 및 연소 특성에 관한 실험적 연구)

  • KIM, JAE HYEON;LEE, KEE MAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.5
    • /
    • pp.512-522
    • /
    • 2018
  • This study was conducted to investigate on the combustion characteristic with the effects of mat thickness and fuel kinds in a metal-fiber burner. The mode transition point is confirmed by the K value, which was defined as the rate of flow velocity and laminar burning velocity. The ($T^4_{sur}-T^4_{\infty}$) is highest at methane flame with 3 T thickness. Through the measurement of the unburned mixture temperature, the possibility of submerged flame in surface combustion burner was confirmed. The rapid emission of CO occurs nearby limit blow out (LBO) because of the increase of flow velocity. In case of NOx, the trend is similar with surface temperature. However, it also considered that the NOx emission is affected by residence time with flame position.

Spray Characteristics of a Pressure Swirl Nozzle for an Ambient Condition due to Flash Boiling (감압 비등에 의한 상압 환경에서의 압력식 와류 노즐의 분무 특성)

  • Kim, Won-Ho;Yoon, Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.686-691
    • /
    • 2010
  • Flash boiling takes place when the thermodynamic state of the liquid deviates from its saturation limit over which the liquid temperature exceeds by a certain degree of superheat. The liquid jet introduced into the lower pressure zone than the liquid saturation pressure experiences a sequence of the atomization and disintegrated into numerous faster and smaller droplets. In the present study spray characteristics for a flash swirl spray were experimentally investigated. Injectant temperature is raised by a high frequency dielectric heating method and local spray characteristics are instantly measured by Global Sizing Velocimetry (GSV, TSI Inc.). Dependence of dimensionless superheat degree and injection pressure on total and local SMDs and mean droplet size is quantitatively examined. The flash swirl spray has the relation in the injection pressure and nozzle diameter in order to determine the spray quality, including the dimensionless superheat degree. Small droplets occur in the void core and local droplet size distributions largely depend on the dimensionless superheat degree and the injection pressure.

  • PDF

Study on the Counterflow Regenerative Evaporative Cooler with Finned Channels (대향류 핀삽입형 재생증발식 냉방기 연구)

  • Choi, Bong-Su;Hong, Hi-Ki;Lee, Dae-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.7
    • /
    • pp.447-454
    • /
    • 2008
  • The regenerative evaporative cooler(REC) is to cool a stream of air using evaporative cooling effect without an increase in the humidity ratio. In the regenerative evaporative cooler, the air can be cooled down to a temperature lower than its inlet wet-bulb temperature. Besides the cooling performance, for practical application of the regenerative evaporative cooler, the compactness of the system is also a very important factor to be considered. In this respect, three different configurations, i.e., the flat plate type, the corrugated plate type, and the finned channel type are investigated and compared for the most compact configuration. The optimal structure of each configuration is obtained individually to minimize the volume for a given effectiveness within a limit of the pressure drop. Comparing the three optimal structures, the finned channel type is found to give the most compact structure among the considered configurations. The volume of the regenerative cooler can be reduced to 1/8 by adopting the finned channel type as compared to that of the flat plate type.

Thermal characteristics of spent activated carbon generated from air cleaning units in korean nuclear power plants

  • So, Ji-Yang;Cho, Hang-Rae
    • Nuclear Engineering and Technology
    • /
    • v.49 no.4
    • /
    • pp.873-880
    • /
    • 2017
  • To identify the feasibility of disposing of spent activated carbon as a clearance level waste, we performed characterization of radioactive pollution for spent activated carbon through radioisotope analysis; results showed that the C-14 concentrations of about half of the spent activated carbon samples taken from Korean NPPs exceeded the clearance level limit. In this situation, we selected thermal treatment technology to remove C-14 and analyzed the moisture content and thermal characteristics. The results of the moisture content analysis showed that the moisture content of the spent activated carbon is in the range of 1.2-23.9 wt% depending on the operation and storage conditions. The results of TGA indicated that most of the spent activated carbon lost weight in 3 temperature ranges. Through py-GC/MS analysis based on the result of TGA, we found that activated carbon loses weight rapidly with moisture desorption reaching to $100^{\circ}C$ and desorbs various organic and inorganic carbon compounds reaching to $200^{\circ}C$. The result of pyrolysis analysis showed that the experiment of C-14 desorption using thermal treatment technology requires at least 3 steps of heat treatment, including a heat treatment at high temperature over $850^{\circ}C$, in order to reduce the C-14 concentration below the clearance level.

Radiative Heat Transfer in Radiatively Particpating Finite Cylindrical Media - Exact and P-N Solutions - (복사에 관여하는 유한 원통형 매질에서의 복사열 전달)

  • 서인수;손종관;임승욱;이준식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.6
    • /
    • pp.1428-1437
    • /
    • 1988
  • An analysis of radiative heat transfer has been conducted on axisymmetric finite cylindrical media. It is assumed that the temperature in the media is uniformly distributed and the boundaries are diffusely emitting and reflecting at a constant temperature. The scattering phase function is represented by the delta-Eddington approximation to account for highly forward scattering by particulates just as in the combustion system. Exact numerical solutions are obtained by Gaussian quadrature method and compared with P-1 and P-3 approximation solutions to verify their engineering application limit. The effects of optical thickness, scattering albedo, wall emissivity and aspect ratio are investigated. The results show that P-3 approximation is found to be in good agreement with the exact solution.

A Reassessment for Dynamic Line Rating of Aged Overhead Transmission Lines in Kepco's Network (한국전력 노후 가공송전선의 동적송전용량에 대한 재평가)

  • Kim, Sung-Duck
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.10
    • /
    • pp.123-129
    • /
    • 2010
  • During the past 2 decades, many electric power companies have been searching various solutions in order to supply power with economical and more efficiency in the present transmission utilities. Most interesting method to increase the line capacity of overhead transmission lines without constructing any new line might be to adapt Dynamic Line Rating(DLR). Specified rating is normally determined by any current level, not by conductor temperature. Although specified rating is essential to design transmission line, dip may be the most important factor in limiting transmission capacity. Transmission lines built by the oldest dip criterion among the 3 different design criteria for conductor dip are nearly over one-half of all Kepco's transmission lines. This paper describes an up-rating method for those transmission lines in order to apply DLR technique. Based on limit dip conductor temperature and current of the transmission lines, limitation performance and effectiveness in applying DLR with weather model are analyzed. As a result of analysis, it can be shown that an improved method could be effectively used for increasing the line rating of old transmission line which was built by the design criterion with low dip margin.

A Study for BMS Operation Algorithm of Electric Vehicles (전기자동차용 전지관리장치의 전지잔존량 연산알고리즘에 관한 연구)

  • Lee J.Moon;Choi Uk-Don;Lee Jong-Phil;Lee Jong-Chan
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.114-117
    • /
    • 2001
  • In the Electric Vehicle(EV) driving system, the Battery Management System(BMS) is very important and an essential equipment. Particularly, BMS monitors the State of Charge(SOC), voltage, current, and temperature of the battery modules when Electric Vehicle is in the state of motoring or charging. Major roles of BMS are like these the first, estimation of State of Charge(SOC), the second, detection of the unbalance of the voltage between battery modules, the third, control of the available limit of the voltage and temperature of batteries by monitoring the batteries status during motoring or charging. In this research, We have focused on estimating SOC of battery according to the status of Electric Vehicle and the BMS operation algorithm. The result for algorithm of SOC estimation is presented. It have been modified, compensated, and verified by means of the experiment.

  • PDF